
Appendices

The Appendix is divided into 10 sections. Appendix A presents a general ‘price-theory’ style
model that illustrates how we measure the WTP for each group of beneficiaries of a policy and
the net cost to the government. Appendix B presents the formal learning-by-doing model and
derives the implications for the willingness-to-pay and government cost that enter the MVPF
framework. Appendix C provides a detailed description of our measures of environmental
externalities. Appendix D discusses how we adjust our estimates for rebound e↵ects. Appendix
E (still in progress) provides a detailed discussion of how we construct each MVPF in our sample.
Appendix F provides details on our test of and correction for publication bias. Appendix G
examines regulatory policy. It shows how we can use the MVPF framework to study whether
tax or subsidy policies are more e�cient at delivering environmental benefits than regulations
targeting similar types of emissions. Appendix H discusses the distinction between the MVPF
approach and more traditional benefit-cost metrics such as net social benefits and the benefit-
cost ratio. Appendix I provides a detailed description of our construction of the resource
cost per ton metrics for each policy in our sample. Finally, Appendix J discusses patterns
of US environmental spending over the last 15 years. It compares spending under American
Reinvestment and Recovery Act (ARRA) and Inflation Reduction Act (IRA).

A Model Appendix: Setup

The MVPF framework requires measuring the willingness-to-pay for each group in society along
with the net costs to the government. In this Appendix, we develop a rich model structure that
allows us to illustrate how straightforward applications of price theory allow us to measure the
WTP of each individual for a policy change along with the net cost to the government. The
model structure extends the discussion in Hendren & Sprung-Keyser (2020) to provide a general
characterization of the MVPF in the presence of externalities. We include what one might call
“traditional” externalities, such as pollution and congestion. In addition to these externalities,
we also allow for imperfect competition, so that a marginal increase in demand can increase firm
profits. We also include what one might call “production” externalities whereby the production
of a good by one firm can induce learning by doing that lowers the marginal cost of production
for all other firms. These learning-by-doing e↵ects (Thompson 2012, Nagy et al. 2013, Farmer
& Lafond 2016, Way et al. 2022) have often been cited as motivation for production subsidies
for new technology that addresses climate change (Acemoglu et al. 2012, Gillingham & Stock
2018).

Finally, we use the model to help think about how to move from partial equilibrium causal
e↵ects of a policy to general equilibrium impacts of policies through changes in prices. One
particularly relevant channel in our setting is the so-called “rebound e↵ect” whereby a policy
that generates an increase (or decrease) in electricity demand will cause the price of energy
to increase (or decrease), leading to further changes in the consumption of dirty and clean
goods.153

153We focus on general equilibrium e↵ects that arise from the causal e↵ect of the policy on prices of the good.
However, the changes we estimate will not typically include the full array of general equilibrium e↵ects of a
policy on all prices and quantities. Nonetheless, the framework illustrates that such e↵ects would be important
if they a↵ect emissions (so that they a↵ect aggregate WTP) or tax revenue (so that they a↵ect government
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We assume each individual consumes a vector of goods, x, which have consumer prices p,
producer prices q, and consumer taxes t (or subsidies), where t=p-q. We assume goods are
indexed by both type and time so that dimensions of the goods and prices di↵er over time
and across goods. For example, x(t) 2 x could be the consumption of electric vehicles at
time t, where consumption in each time period is a separate element of x.154 For convenience,
we use notation suggesting that x is finite dimensional, but will find it convenient to allow
time to be continuous in the section below that measures learning-by-doing externalities. The
individual is also a↵ected by a vector of externalities, e, which impose a monetized harm of
vi ⇤ e on individual i, where vi is a vector of valuations of the externality from individual i
and “*” represents the dot product. For example, e can contain measures of the quality of the
climate in 2050, commute times in New York on a particular day in 2020, and the presence of
PM2.5 in Beijing in 2030. Di↵erent individuals will naturally have di↵erent valuations, vi, of
these externalities. These valuations come from the assumption that individuals maximize a
well-behaved utility function ui(x;e) subject to a budget constraint, p*x  mi, where mi is
unearned income of individual i. Given this maximization program, we define vi =

1
�i
Oeu(x⇤; e),

where Oe is the gradient of the utility function with respect to each externality, evaluated at
the optimal bundle x⇤ and �i is the Lagrange multiplier on individual i’s budget constraint.
The intuition is that Oeu measures how the externalities a↵ect utility and �i changes units
from utils into dollars. Finally, we assume the vector of goods in the economy is produced by
a composite firm that has pre-tax profits ⇧ and faces a tax rate ⌧c. Individual i owns a share
si in after-tax profits, generating payments (1� ⌧c)si⇧. With these assumptions, the envelope
theorem implies that the willingness-to-pay of individual i for a policy change is:

WTPi = xi ⇤ dp+ vi ⇤ de+ (1� ⌧c))sid⇧. (35)

There are three reasons that individuals are willing to pay for a policy change: (a) it makes
the goods they consume cheaper, xi ⇤ dp, where dp is the causal e↵ect of the policy on prices;
(b) it changes the value of the externalities they experience, vi ⇤ de, where de is the causal
e↵ect of the policy on the externalities; or (c) it changes the income they receive from firm
profits, (1� ⌧c)sid⇧, where d⇧ is the causal e↵ect of the policy on firm profits.

We assume these profits arise from the production of goods consumed in the economy. Let
x =

P
i xi denote total production of goods in the economy. We assume there is a single

representative firm with a marginal cost function, c(x), so that market profits are ⇧(x) =
x*(q� c(x)). The policy impact on firm profits is:

d⇧ = dx*(q-c(x))+ x*(dq� Oc(x) · dx) (36)

where we let “·” denote the Hadamard product (element-wise multiplication), to contrast it
with “*” that denotes the standard dot product multiplication, and Oc(x) denotes the gradient
of the cost function. The first term is the change in consumption multiplied by the firm markup.
This sums across the change in production of each good multiplied by the markup for that good.
This would be zero under perfect competition (q = c(x)), but under imperfect competition
increasing firm demand leads to higher profits. The second term is the impact of the policy
on producer markups (prices minus costs). If the policy increases (decreases) producer prices,
dq, this increases (decreases) firm profits. If the policy increases firm costs, this reduces firm

costs).
154We do not directly discuss worker wages, they are incorporated by thinking of labor as a good with a

negative price (i.e., paid by firms to workers instead of from individuals to firms
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profits proportional to the Hadamard product of the derivatives of the cost function, Oc, and the
change in production of each good, dx. Note that the generality of the cost function notation
means we are allowing for consumption of one good (e.g., EVs today) to a↵ect marginal costs
of another good (e.g., EVs in the future), a feature we discuss further in the next section.

We assume externalities arise from the production or consumption of the vector of goods,
x. For example, increased gasoline consumption has some impact on the vector of pollutants,
such as CO2, SO2, and congestion. Producing electricity using solar or wind power instead of
coal can reduce PM2.5 in addition to CO2 and other pollutants. We therefore model our vector
of pollutants e as a vector-valued function e=E(x), and we let OE denote its Jacobian matrix.
Each individual i ’s willingness-to-pay for the sum of the changes in pollution that arise from
changes in consumption and production of x is given by:

vi ⇤ de = vi ⇤ OE ⇤ dx (37)

where vi⇤OE is the vector of costs to individual i of the consumption of x in the economy – the
matrix sums across the externalities produced from each good in the economy and multiplies by
each individual’s valuation, vi, of those externalities. It is important to note that E is a vector
and equation 37 is summing across all the possible externalities experienced by individual i. This
means we allow for individuals to experience externalities very di↵erently.155 In implementation,
we will often sum across many individuals when forming the environmental externalities, but
will delineate amongst subgroups wherever possible (e.g., when an SCC model allows us to
think about benefits to di↵erent regions/countries/generations).

We also will allow for environmental externalities to a↵ect the government budget in addition
to directly a↵ecting individuals. For example, the DICE and RICE models report damages in
GDP or GDP-equivalent units (Nordhaus 1993). If we consider these as impacting productivity,
it suggest carbon decreases global economic output by $SCC per ton of carbon. Globally, 15%
of this incidence falls on the US. With a 30% tax rate,156 this suggests government tax revenue
declines by $.045SCC per ton of carbon emitted today. Other models of carbon damages have
di↵erent incidence: Rennert et al. (2022) suggests emissions lead to lost lives in the US and
reductions in the productivity of agriculture, but no negative impact on US GDP (and thus no
impact on tax revenue). Our approach will consider multiple models of carbon damages in our
analysis and explore the robustness of our results; the key point here is that our framework asks
us to think about not just the magnitude but also the incidence of the damages from carbon
emissions.

Translating the impact of environmental harms on the government budget, we assume the
government taxes goods and services, x, and profits, ⇧, so that the net impact on the govern-
ment budget of the policy is

Cost = x ⇤ dt+ t ⇤ dx+ ⌧ c(dx*(q-c(x))+ x*(dq� Oc(x) · dx)) (38)

This is equivalent to the sum of the mechanical cost of any change to the subsidies or taxes
(x ⇤ dt), the impact of the behavioral response on the cost of subsidies (t ⇤ dx), and the impact

155For example, one element of e could be commute times in NYC; another element can be the daily temper-
ature in Kenya in 2050. New Yorkers may value their commute times but not care about the temperature in
Nairobi in 2050. Farmers in Kenya in 2050 might care about their daily temperature, but not be as concerned
with how long it takes an investment banker in NYC to get to work.
156This further assumes government and private discount rates are equivalent
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of the policy on profits multiplied by the tax rate on capital income (⌧ c), yielding revenue
⌧ cd⇧. The environmental impacts noted above are captured by the fact that taxed behavior
(x) changes in the future in response to carbon emissions today – a feature we discuss further
in our implementation below. Equations 35 and 38 are the core components feeding into the
construction of the WTP and cost components needed for our welfare analysis.

Causal E↵ects: Partial vs. General Equilibrium

Measuring the WTP and cost of the policy requires measuring the causal e↵ects of the policy
change on x, which we have denoted by dx. A casual glance at the equations might suggest that
one can use “reduced form” evidence on the e↵ect of the policy on allocations x without worrying
about the impact of subsequent general equilibrium e↵ects or other changes in behavior. This
interpretation, however, is not generally true because the “dx” term needs to reflect the full
causal e↵ect of the policy change. As discussed above, this includes the long-run impact of
emissions today on future taxed behavior so that we accurately measure government costs.
But even absent these dynamics, we also must include any spillover or “general equilibrium”
impacts that are not captured by an RCT or quasi-experimental analysis.

For example, consider an electric vehicle subsidy that increases purchases today. This
increase is readily measured in RCTs and quasi-experimental studies. However, purchasing
more EVs can lead to a reduction in gasoline demand. This in turn can lead to a reduction
in the price of gasoline which can increase driving of gasoline powered vehicles – a so-called
“rebound e↵ect” in the energy economics literature. Conversely, EV purchases may increase
electricity demand causing electric prices to rise, reducing electricity consumption – a reverse
rebound e↵ect, so to speak. If we know how much an EV changes energy demand for electricity
and gasoline, we can measure the size of these “rebound” e↵ects using additional information
on market supply and demand elasticities. These will be central components of our empirical
analysis.

B Model Appendix: Learning by Doing

A more complicated way in which price changes can a↵ect demand is via learning-by-doing
externalities. The contribution of this section is to provide a new su�cient statistics result
(Theorem 1, introduced in the main text and stated precisely in a generalized form below)
that translates cost curves, demand curves, and an assumption about market equilibrium into
a formal statement about society’s willingness-to-pay for the dynamic e↵ects of policies that
increase consumption of these goods today. Before delving into the analysis, it is useful to start
by noting the model already allows for learning by doing through the general cost function
c(x). The Jacobian of this cost function, Oc(x), specifies how changes in the production of one
good (e.g., solar panels today) a↵ects the cost of producing other goods (e.g., solar panels in
the future).

The basic idea of our approach is to write out a cost function that follows the shape in
Appendix Figure 1 and then solve for the impact on WTP and cost. Importantly, we care
not only about the direct e↵ects (e.g., the Oc(x) above), but also the indirect e↵ects from the
fact that a subsidy today can cause an increase in consumption of the good in the future (e.g.,
after that subsidy has ended). In other words, the causal e↵ect dx will have not only static
components from when the policy operates but dynamic components from long run impacts on
the cost of production.
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We focus on a policy change that increases a subsidy for one particular good, which we call
a ‘green good.’157 We denote market-level consumption of this good at time t by x(t) 2 x, and
an individual’s consumption by xi(t). We consider a policy change that increases the subsidy
for this good from ⌧(t) to ⌧(t) + d⌧ starting at some time t⇤ � ⌘ that lasts for a length of time
⌘ and thus ends in period t⇤. Without loss of generality, we normalize t⇤ = 0. Therefore, the
subsidy change is in operation over the time window [�⌘, 0]. Later, it will be helpful to consider
the limiting behavior as ⌘ and d⌧ become small.

The subsidy change, d⌧ , over this time window[�⌘, 0] has a causal e↵ect on the market-level
consumption of the green good at each time t, which we denote dx(t).158 Formally, dx(t) is
a (Fréchet) di↵erential of the time path of consumption of x(t) with respect to the subsidy
change, t⇤, and ⌘.159 In addition, the subsidy also has an e↵ect on consumer prices, p(t), at
each time t, which we denote by dp(t).

First, consider the cost of this policy to the government if no one changed their behavior,
also known as the “mechanical” cost of the policy. This is equal to the product of the size of the
subsidy change, d⌧ , the length of the change, ⌘, and the flow of goods subject to the change,
which for small ⌘ is equal to xi(0). Combining, this is ⌘d⌧xi(0). We assume a pass through
rate of � of the subsidy to consumer prices dp = ��d⌧ . In our baseline specification, � = 1,
but we relax this assumption for alternative specifications where empirical evidence suggests
incomplete pass through.

Next, consider the impact of the behavioral responses to the policy dx(t) while the subsidy
is in operation during [�⌘, 0]. This change generates environmental externalities that arise both
because of the direct purchase of the new good but also because the purchase of the good o↵sets
purchases of other goods (e.g., an EV purchase leads to lower gas consumption). To economize
notation, let ⌫i(t) denote the sum of the value of the externalities experienced by individual i per
unit of change in the consumption of the good at time t, so that the environmental externality
on individual i is given by ⌫i(t)dx(t), and we let ⌫(t) =

P
i ⌫i(t) denote the full externality.160

In addition to environmental externalities, the subsidy also can a↵ect firm profits in a
non-competitive environment. However, introducing strategic behavior on the part of firms
introduces substantial complexity in a dynamic environment with learning by doing. As a
parsimonious alternative, we assume that prices are set at a constant markup µ over marginal
costs, so that p = (µ + 1)c in each time period, with our baseline case of µ = 0 corresponding
to perfect competition. Given that dynamically optimizing firms would partially internalize
learning-by-doing externalities, we view our approach as an upper bound on the willingness-to-
pay generated from learning-by-doing e↵ects.

Finally, the change in consumption of the green good a↵ects government costs proportional
to the pre-existing subsidy, ⌧(t)dx(t). We assume for exposition this is the only fiscal externality,
but relax this assumption in our empirical implementation (e.g., we account for lost gas tax
revenue when people buy more EVs). We also assume for simplicity in the exposition that
there is no subsidy in operation after t = 0, although we again relax this in our empirical

157A similar derivation applies to other policies that increase consumption of a good today that has learning-
by-doing e↵ects.
158We assume for now that the policy was unanticipated so that there is no causal e↵ect prior to t⇤ but our

approach can be generalized to include such anticipatory e↵ects.
159Note that as ⌘ ! 0, dx(t) ! 0. As in traditional calculus of variations approaches, the ratio of dx(t) to ⌘

is what will matter for our analysis.
160In the notation of our model, let dx(t) denote the vector of changes of time t variables but that has zeros

everywhere else in x. Then, ⌫i(t) = viOEdx(t)
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implementations where relevant. 161

Static Benchmark Before turning to the dynamic components of the MVPF, it is helpful
to establish a benchmark MVPF in the absence of dynamic cost curve e↵ects. In this case,
dx(t) = 0 for t > 0 and thus the terms discussed to this point allow us to construct the MVPF.
The WTP is given by the sum of the mechanical benefit of the policy and the environmental
externalities, while the government cost is the mechanical benefit plus the fiscal externality.
These can be written as

MV PF =
1 + SE

1 + FE
(39)

where

SE =
⌫(0)

p(0)
✏ (40)

is the static externality benefit from additional consumption of x and

FE =
⌧(0)

p(0)
✏j (41)

is the fiscal externality impact of additional consumption of x. Here, the elasticity ✏ = dx(0)
dp(0)

p(0)
x(0) is

the ratio of the percent change in x relative to the percent change in prices due to the subsidy.
Comparing the numerator and denominator of the MVPF, note that we have MV PF = 1
whenever the subsidy is at its Pigouvian optimal level, ⌧(0) = e(0). When the existing subsidy
is less than this, the MVPF will exceed 1, indicating the value of a slightly higher subsidy
exceeds its cost to the government.

Dynamic MVPF Having established this static benchmark, now suppose that the subsidy
today has dynamic e↵ects. This introduces two additional types of externalities. The first arises
because the additional consumption of x today leads to lower marginal costs in the future -
this is the Oc(x) term in equation 13. Motivated by Appendix Figure 1, we assume that the
marginal cost of producing the good x(t) is given by c(X(t)), where X(t) =

R t

0 x(s)ds + x(0)
is cumulative production at time t. With this expression, the causal e↵ect of the subsidy near
t = 0 of costs in period t > 0 per dollar of the mechanical cost of the policy, x(0)⌘d⌧ , is given
by � d[c(X(t))]

x(0)⌘d⌧ . This price reduction is valued depending on how much x individual i consumes
in period t. Discounting using the real discount rate ⇢ yields a valuation from these price
reductions of

DPi =

Z 1

0

�xi(t)
d[p(X(t))]

x(0)⌘d⌧
e�⇢(t)dt (42)

161Adding existing subsidies in place after t⇤ changes the structure of the di↵erential equation governing our
analysis such that there is no longer a closed form solution. In this case, we solve the ODE numerically out to
a large time horizon.
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where “DP” stands for the dynamic price reduction generated from the response. 162 Mean-
while, firms have a willingness-to-pay of

D⇡ =

Z 1

0

d[⇡(X(t), x(t))]

x(0)⌘d⌧
e�⇢(t)dt (43)

where ⇡((X(t), x(t) = µc(X(t))x(t) are firm’s profits. In addition to the price response, the
lower costs lead to greater consumption of x given by dx(t)

x(0)⌘d⌧ per dollar of mechanical spending

on the policy. Individual i values this change in x at time t according to ⌫i(t) , leading to a
PDV of benefits:

DEi =

Z 1

0

[
dx(t)

x(0)⌘d⌧
⌫i(t)]e

�⇢(t)dt (44)

Turning to the government costs, just as the behavioral response at t⇤ = 0 a↵ects govern-
ment revenue, so does the behavioral response for t > 0. This e↵ect depends on the size of the
subsidies in place, ⌧(t), after t = 0 (which we assume for simplicity are zero in our baseline
specification) and also any impacts from the future environmental quality on tax revenue re-
ceived by the government, which we denote as ⌫g(t).163 The PDV impact on government costs
is then

DFE =

Z 1

0

dx(t)

x(0)⌘d⌧
⌫g(t)e

�⇢(t)dt (45)

where we would replace ⌫g(t) with ⌧(t)� ⌫g(t) in the presence of pre-existing subsidies.

Summing together, we arrive at the MVPF inclusive of these dynamic e↵ects:

MV PF =
1 + SE +DP +DE

1 + FE +DFE
(46)

which is equivalent to the above but now includes the impact of the policy today on future
prices and environmental externalities. Now, the key question is: how do we measure these
dynamic terms in the equation above?

B.1 Moving Forward in Time

In general, measuring the response of future prices and consumption is quite complex. However,
in our model this task is simplified by the fact that the subsidy essentially “moves us forward in
time.” To see, this, note that the subsidy in place over [�⌘, 0] induces an increase in the initial
stock of cumulative consumption (X(0)) and contemporaneous consumption (x(0)) to X(0)0

and x(0)0 in the post-subsidy period. Since cumulative production is continuous and strictly
increasing over time, there exists a time t > 0 such that X(0)0 = X(t). Because the ordinary
di↵erential equation (ODE) governing X(t), x(t) is autonomous – depending on the time index
only indirectly through X and x, this shift forward in the initial condition fully characterizes

162By the envelope theorem, the willingness-to-pay for future marginal consumption due to lower prices is zero.
163This term is given by the impact of the policy today on future consumption of goods in the economy,

multiplied by the tax rate on those goods and services – i.e. the t ⇤ dx term in our government cost equation
but focusing on the components where t > 0.
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how the production paths change with a shock to the initial conditions.164

What remains then is simply to characterize how the initial conditions (the starting stock
and flow of production in the post-subsidy period) change with an infinitesimal subsidy change
over [�⌘, 0]. Formally, let dX(0) denote the impact of the policy change on cumulative pro-
duction at time 0. By definition of X(t), we have that dX(t) = X 0(t)dt = x(t)dt. Note that for
small ⌘ , we can also write dX(0) as

dX(0) ⇡ ��⌘✏
d⌧

p(0)
x (0) (47)

where.165 Intuitively, the change in cumulative consumption is given by the change in flow
consumption from a change in prices, dx(t)

dp(t) = ✏p x(t)p(t) , multiplied by the subsidy change, d⌧ , and
then cumulated over the length of the subsidy ⌘. For small ⌘, ⇡ holds exactly if we divide each
side by ⌘ and take the limit as ⌘ ! 0 as we can approximate the flows using just the response
measured at t = 0 This means we can think of the policy as moving us forward in time by

dt = ��⌘✏
d⌧

p(0)
(48)

The subsidy today “pushes us down the cost curve” by an amount of time that is proportional
to the elasticity of demand operating during the subsidy (✏), the length of time the subsidy is
in place (⌘), and the size of the subsidy as a share of the price ( d⌧

p(0)).

How does the increase in cumulative production a↵ect costs (and thus prices) in future
periods? Note that because marginal cost is given by c (X(t)), the derivative of marginal costs
with respect to time is d

dtc(X(t)) = cX(X(t))X 0(t) = cX(X(t))x(t). So, moving costs forward
by dt yields a reduction in costs that is given by d

dtc (X (t)) dt = cX(X(t))x(t)dt.

Plugging in dt = ��⌘✏ d⌧
p(0) , we have:

d[p(X(t)]

⌘d⌧
= (µ+ 1)

d[c(X(t)]

⌘d⌧
= �(µ+ 1)�

✏

p(0)
cX(X(t))x(t) (49)

The impact of the policy today of size ⌘d⌧ on future prices depend on how much it increases
consumption today, ✏, multiplied by x(t), and normalized by the ratio of marginal costs in the
future to the present, cX(X(t))/p(0). The key insight here is that equation 49 measures how
marginal costs change in all future periods, t > 0, as a result of the subsidy levied in [�⌘, 0].
So, we can now use this to plug back into our formulas for the dynamic price component of the
MVPF:
164This is because autonomous ODEs exhibit “horizontal invariance”. That is, if X(t) solves the autonomous

ODE satisfying the initial condition X(t0) = X0, then X(t + t0) solves the same ODE with initial condition
X(0) = X0.
165To see this, note that we can write

dX(0) =

Z 0

�⌘
dx(t)dt

=

Z 0

�⌘
��✏x(t)

d⌧

p(t)
dt

where ✏x(t)p(t) = dx(t)
dp(t)
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DP = (µ+ 1)

Z 1

0

x(t)

x(0)
lim
⌘!0


�d[c(X(t))

⌘d⌧

�
e�⇢tdt (50)

= (µ+ 1)�

Z 1

0

x(t)

x(0)


✏
x(t)

p(0)
cX(X(t))

�
e�⇢tdt (51)

= (µ+ 1)�

Z 1

0

e�⇢t✏

✓
cX (X(t))

c (X(t))
X(t)

◆
c(X(t))

c(X(0))

x(t)

X(t)

x(t)

x(0)
dt (52)

The first line passes the limit to the variables that depend on ⌘ (dp(t) and ⌘), the second line
plugs in equation 49, and the third line re-arranges terms and uses the fact that price is equal
to marginal cost, c(X(t)) = p(t), as recall we have assumed no subsidies for t > 0.

Turning next to firm profits, we have ⇡ = µc(t)x(t) so that d⇡ = µ (dc(t)x(t) + dx(t)c(t)),
therefore

D⇡ = µ

✓Z 1

0

x(t)

x(0)
lim
⌘!0


dc(t)

⌘d⌧

�
e�⇢tdt+

Z 1

0

c(t)

x(0)
lim
⌘!0


dx(t)

⌘d⌧

�
e�⇢tdt

◆
(53)

= �µ�

✓Z 1

0

x(t)

x(0)

cX(X(t))x(t)

p(0)
✏e�⇢tdt+

Z 1

0

c(t)

x(0)

✏x0(t)

p(0)
e�⇢tdt

◆
(54)

Next, we turn to the dynamic externality term, DE. This is determined by how the subsidy
a↵ects the time path of consumption of x, dx(t). Recall that the policy change can be thought
of as moving forward by dt = ��⌘✏ d⌧

p(0) . So, we can think of the change in x at a point in time
as following:

dx(t) = ��⌘x0(t)✏
d⌧

p(0)
(55)

The intuition is that if x is increasing in time (x0(t) > 0) then moving down the cost curve
leads to greater consumption at time t than in the world without the subsidy (in our setting,
it is natural to envision that prices go down over time because marginal cost goes down over
time, so the consumption of x increases over time, x0(t) > 0 for all t). The amount by which
consumption goes up, dx(t), is given by the slope of x multiplied by how far time moves forward
as a result of the subsidy, ��⌘✏ d⌧

p(0) . So, we can write DE as

DE =

Z 1

0

⌫(t) lim
⌘!0


dx(t)

x(0)⌘d⌧

�
e�⇢tdt (56)

=

Z 1

0

✏⌫(t)x0(t)

x(0)c(X (0))
e�⇢tdt (57)

where the last line both substitutes equation 55 and uses the assumption that subsidies go
away at t = 0 so that c (X (0)) = p (0). Finally, replacing ⌫(t) with the government revenue
component of the environmental externality yields DFE.

These equations for DP , DE, and DFE fully characterize the MVPF of environmental
subsidies. We summarize the analysis above into the following Lemma.

Lemma 1. Suppose there are no subsidies after t = 0 and price equals marginal cost for all
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periods t > 0. Then, the MVPF of a small subsidy (d⌧ ⇡ 0 and ⌘ ⇡ 0) is given by

MV PF =
1 + SE +DP +DE

1 + FE +DFE
(58)

where the terms are defined as above.

B.2 Isoelastic Specification

So far, we have not imposed any functional forms on the structure of how cumulative production
a↵ects marginal costs or how prices a↵ect demand. However, in order to estimate DP and DE,
we need to be able to forecast the time path of future demand and costs, x(t) and c(X(t)) = p(t).
To obtain our analytical solution for the future path of prices and consumption, we parameterize
consumers’ demand function by an isoleastic specification:

x (p(t)) = ap(t)✏ (59)

with ✏ < 0. A one percent reduction in prices leads to an ✏ percent increase in demand.

For firms, we assume that each firm’s marginal cost is also given by an isoelastic specification:

c (X) = X✓ (60)

A one percent increase in cumulative production leads to a ✓ percent decline in marginal costs.
Under our assumption of constant markups, this in turn implies a ✓ percent reduction in prices.

The second key insight in our framework is that we can combine equations (1) and (2) to
yield

d

dt
log(x) = ✏

d

dt
log(p) =

d

dt

d log (c (X))

d log (X)

d log (X)

dt
= ✏✓

x(t)

X(t)
(61)

where the second equality uses the fact that at the no-subsidy baseline, consumer prices are
equal to marginal costs in each period. Recall x(t) = X 0(t), which means we can write the
evolution of production as a 2nd order ordinary di↵erential equation (ODE):

X 00(t)

X 0(t)
= ✏✓

X 0(t)

X(t)
(62)

Equation 62 characterizes how consumption of x evolves over time as a function of the demand
and cost curve elasticities.

Recalling that t = 0 corresponds to the end of the hypothetical subsidy increase period,
we impose the initial conditions X(0) = X0, x(0) = x0 for where X0, x0 are contemporaneous
and cumulative production at the time at which we calculate the dynamic externalities (i.e.,
in context or in 2020), which we observe in the data. 166 This yields a general closed-form
solution for X(t) given by

X(t) = C1(t+ C2)
1

1�✏✓ (63)

166Given that we observe data in yearly increments, we define cumulative production to be lagged cumulative
production, taking the sum of yearly production in all prior years. This is to capture the fact that we model
learning by doing and not static economies of scale, such that contemporaneous production does not a↵ect
contemporaneous marginal costs. Put di↵erently, this matches what we would obtain in the discrete time
version of our model.
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where C1, C2 2 R+ are pinned down by the initial conditions, and therefore

x(t) =
C1

1� ✏✓
(t+ C2)

✏✓
1�✏✓ (64)

Having solved this ODE, we now have a closed form expression for the MVPF.

Theorem 1 (Generalized Version) (Iso-elastic Specification). Suppose demand is given
by equation 59 and the marginal cost is given by equation 60. Then,

DP = �(µ+ 1)
✓✏

1� ✓✏
C

�✓ (1+✏)
1�✏✓

2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt (65)

where

C2 =
X(0)

x(0)(1� ✏✓)
(66)

while

DE = � �✓✏2

(1� ✏✓)c(X(0))
C

� ✏✓
1�✏✓

2

Z 1

0

e�⇢t(t+ C2)
2✏✓�1
1�✏✓ ⌫(t)dt (67)

where c(X(0)) is marginal costs at the point at which we estimate the dynamic externalities,
and DFE follows the same form as DE replacing ⌫(t) with the government budget externality
per unit of x(t).

Theorem 1 yields the MVPF for subsidies of a green good in the presence of learning-
by-doing externalities. This generalized version corresponds to Theorem 1 in the main text
when � = 1, µ = 0. We also express C2 as the “starting time” t⇤ of the policy (rather than
normalizing t⇤ = 0 ) to stress the interpretation of this parameter as how far along the cost
curve a technology is at the time we consider a marginal subsidy.

The theorem shows that we need to know 3 key parameters (a) the elasticity of demand with
respect to price, ✏, (b) the elasticity of marginal cost with respect to cumulative production, ✓,
and the ratio of cumulative production to flow production at the time of the subsidy change
adjusted by these first two parameters, X(0)

x(0)(1�✏✓) . Moreover, we can also do some compara-
tive statics to establish some intuitions of how these dynamic components change with these
parameters.

Theorem 2 (Comparative statics)
In our isoelastic setting, we have (a) limC2!1 DP = 0, and there exists C̄ such that DP is
strictly decreasing for C2 greater than C.
(b) For C2 greater than some cuto↵ , DP = 0 is strictly decreasing in ✏ and ✓.
(c) DP is always strictly increasing in � (the pass through rate of the subsidy).

Part (a) We prove decreasingness first. For reference, we reproduce the expression for

DP = �(µ+ 1)
✏✓

1� ✏✓
C

�✓ 1+✏
1�✓✏

2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt.

Note that �|{z}
>0

( µ|{z}
�0

+1) ✏✓

1� ✏✓|{z}
2(0,1)

> 0 under our assumptions; therefore, it su�ces to show
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d
dC2

✓
C

�✓ 1+✏
1�✓✏

2

R1
0 e�⇢t(t+ C2)

�1+✓ 1+✏
1�✏✓ dt

◆
< 0. 167

The derivative of interest is

� ✓
(1 + ✏)

1� ✏✓
C

�1�✓ (1+✏)
1�✏✓

2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt

+C
�✓ (1+✏)

1�✏✓
2 (�1 + ✓

1 + ✏

1� ✏✓
)

Z 1

0

e�⇢t(t+ C2)
�2+✓ 1+✏

1�✏✓ dt,

which has the same sign as

�
Z 1

0

e�⇢t(t+ C2)
�2+✓ 1+✏

1�✏✓

| {z }
A

+ ✓
(1 + ✏)

1� ✏✓

✓Z 1

0

e�⇢t(t+ C2)
�2+✓ 1+✏

1�✏✓ dt� C�1
2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt

◆

| {z }
B

The first term, A, is clearly negative. For the second term, B, note that
R1
0 e�⇢t(t +

C2)
�2+✓ 1+✏

1�✏✓ dt  C�1
2

R1
0 e�⇢t(t + C2)

�1+✓ 1+✏
1�✏✓ dt. Therefore, B has the same sign as �✓ (1+✏)

1�✏✓ .

When ✓ (1+✏)
1�✏✓ > 0, both terms are thus negative and we are done. When ✓ (1+✏)

1�✏✓ < 0 so that
B is negative, we show that it nevertheless becomes asymptotically negligable relative to A,
implying there exists a cuto↵ C above which the statement holds. To see this, consider

lim
C2!1

R1
0 e�⇢t(t+ C2)

�2+✓ 1+✏
1�✏✓ dt� C�1

2

R1
0 e�⇢t(t+ C2)

�1+✓ 1+✏
1�✏✓ dt

�
R1
0 e�⇢t(t+ C2)

�2+✓ 1+✏
1�✏✓

= lim
C2!1

R1
C2

e�⇢tt�2+✓ 1+✏
1�✏✓ dt� C�1

2

R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt

�
R1
C2

e�⇢tt�2+✓ 1+✏
1�✏✓ dt

where the RHS follows after canceling out common terms e⇢C2 . By the preceeding analysis,
both the numerator and denominator are negative for any C2 > 0, so the limit is at least 0.
Now we show it is at most 0. Direct substitution yields an indeterminate form of 0

0 . Applying
l’Hopital’s rule to the RHS above and using Liebniz’ rule for di↵erentiation under the integral
sign yields

lim
C2!1

�e�⇢C2C
�2+✓ 1+✏

1�✏✓

2 + C�1
2 e�⇢C2C2

�1+✓ 1+✏
1�✏✓ + 1

C2
2

R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt

e�⇢C2C
�2+✓ 1+✏

1�✏✓
2

= lim
C2!1

R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt

C2
2 + e�⇢C2C

�2+✓ 1+✏
1�✏✓

2

This again yields an indeterminate form of 0
0 , but, noting that

R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt  C

�1+✓ 1+✏
1�✏✓

2

R1
C2

e�⇢tdt =

167Note that we can reexpress
R1
0 e�⇢t(t + C2)

�1+✓ 1+✏
1�✏✓ dt as

R1
C2

e�⇢(t�C2)t�1+✓ 1+✏
1�✏✓ dt. This formulation will

frequently prove useful.
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e�⇢C2

⇢ C
�1+✓ 1+✏

1�✏✓

2 (because t�1+✓ 1+✏
1�✏✓ is decreasing for ✓ 1+✏

1�✏✓ < 1), we have that by monotonicity of
limits, the above centered expression is bounded above by

lim
C2!1

e�⇢C2

⇢ C
�1+✓ 1+✏

1�✏✓

2

C
2

2e
�⇢C2C

�2+✓ 1+✏
1�✏✓

2

= lim
C2!1

1

⇢C2
= 0

This concludes the analysis of decreasingness. Note that decreasingness is not su�cient to
establish that the limit is 0, since the derivative could become arbitrarily small. To show that
DP converges to 0 as C2 grows large, clearly, it su�ces to show that

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt  KC
d�1+✓ 1+✏

1�✏✓ e
2

for t⇤ > e for some constant K independent of t⇤. If this is the case, then

✓✏

1� ✓✏
C

�✓ (1+✏)
1�✏✓

2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt  KC
d�1+✓ 1+✏

1�✏✓ e�✓ (1+✏)
1�✏✓

2

Since dxe < x + 1, this term clearly converges to 0 as C2 goes to infinity. Rewrit-

ing
R1
0 e�⇢t(t + C2)

�1+✓ 1+✏
1�✏✓ dt = e⇢C2

R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt, we note that if ✓ 1+✏

1�✏✓ < 1, then
R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓  C

�1+✓ 1+✏
1�✏✓

2
1
⇢e

�⇢C2 by monotonicity of the integral and the fact that t↵ is
decreasing for ↵ < 0.

In the remaining case where ✓ 1+✏
1�✏✓ > 1, we rely on the following lemma:

R1
x e�zza�1dv 

ae�xxa�1, 8a 2 N\{0} and x > a . This is proven via induction on a. In the base case, start
with a = 1. We have

R1
x e�zza�1dv =

R1
x e�zdz = e�x = ae�xxa�1.

In the inductive step, consider
R1
x e�zza�1 for some a 2 N\{0} where the predicate holds

for 1, . . . a� 1. Integrating by parts with u = za�1, dv = e�z, we get
Z 1

x

e�zza�1 = �e�zza�1|1x +

Z 1

x

(a� 1)e�zza�2dz.

= e�xxa�1 + (a� 1)

Z 1

x

e�zza�2dz

 e�xxa�1 + (a� 1)(a� 1)e�xxa�2

by the inductive hypothesis.

Forx > a� 1, this obeys

 e�xxa�1 + (a� 1)xe�xxa�2

= e�xxa�1 + (a� 1)e�xxa�1
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= ae�xxa�1,

confirming the inductive step.

Since
R1
C2

e�⇢tt�1+✓ 1+✏
1�✏✓ dt = 1

⇢
✓ 1+✏
1�✏✓

R1
⇢C2

e�tt�1+✓ 1+✏
1�✏✓ dt  1

⇢
✓ 1+✏
1�✏✓

R1
⇢C2

e�ttd�1+✓ 1+✏
1�✏✓ edt for t⇤ >

e, at which point we can apply the above lemma, this completes the proof of part a.

Part (b)

Again we reproduce

DP = �(µ+ 1)
✏✓

1� ✏✓
C

�✓ 1+✏
1�✓✏

2

Z 1

0

e�⇢t(t+ C2)
�1+✓ 1+✏

1�✏✓ dt.

We start with the comparative statics with respect to ✓.

@DP

@✓
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which has the same sign as
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which equals
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Note that if ✓ 1+✏
1�✏✓ > 0, both terms are negative, concluding the proof.

If ✓ 1+✏
1�✏✓ < 0, the first term is positive while the second term is negative. Again, the proof

amounts to showing that the first term is asymptotically negligable relative to the second.

To see, note that
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We use a similar approach to sign the derivative with respect to ✏. We get
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which has the same sign as
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The same argument as above establishes that the first two terms become negligible relative
to the third (which is negative) as C2 grows large.

Part c

Simply di↵erentiating the WTP expression with respect to the pass through rate � yields
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1�✏✓C

�✓ 1+✏
1�✓✏

2

R1
0 e�⇢t(t+ C2)

�1+✓ 1+✏
1�✏✓ dt.

Theorem 2 shows that eventually, the learning-by-doing externalities diminish over time as
cumulative production increases. It also shows that higher demand elasticities and cost curve
elasticities lead to greater dynamic price externalities. And, greater elasticities also lead to
greater price externalities.

C Externalities

This appendix provides details on how we construct harmonized measures of externalities as-
sociated with electricity generation, natural gas production, and vehicles. .

C.1 Electric grid externalities

A key input into our wind, solar, weatherization, rebates, EVs, and nudge policies is the electric
grid. The externalities from the grid include environmental externalities (both GHGs and local
pollutants) and externalities arising from imperfect competition of electricity providers such
that the marginal change in electricity demand a↵ects firm profits. In this section, we provide a
detailed explanation of how we construct these externalities in each region of the country over
time.

C.1.1 Marginal Emissions

To estimate the emissions from marginal changes in electricity demand and renewable energy
supply, we use EPA’s Avoided Emissions and Generation Tool (AVERT). AVERT reports the
marginal emissions factors for CO2, NOx, PM2.5, and SO2 per KWh (EPA 2024b). 168 This tool
uses historical data on regional demand and generation to estimate the displaced emissions that
would result from new energy programs including residential solar, wind, and energy e�ciency
programs.

Since we are interested in the emissions from policy changes that a↵ect electricity usage,
we use AVERT’s estimates for the emissions associated with the additional, rather than the
average, electricity usage. We note that a grid’s marginal emissions rate is often considerably
higher than its average emissions rate (Holland et al. 2022). Using our estimates, the monetized
externality from the marginal kWh is roughly two times higher than that for the average kWh
in 2020. Regions of the grid that have a low average emissions rate due to renewables may still
have a high marginal emissions rate if natural gas is the marginal generation source.

AVERT reports national and region-specific estimates. The heterogeneity in the monetized
environmental externality per MWh across the US in 2020 is shown in Appendix Figure 3.
AVERT splits the contiguous US into 14 electricity regions. Prior to 2019, AVERT used 10
regions. From 2007-2022, we construct state specific emissions factors by mapping each state-
year pair with its corresponding AVERT region.169 This is mostly trivial; a state is generally

168Consistent with vehicle externalities, NOx, PM2.5, and SO2 are local pollutants and CO2 is a global
pollutant
169For in-context estimates that require earlier data, we apply the 2007 emissions rate to 2005 and 2006.

145



entirely contained within a region. For the instances in which a state is shared by multiple
regions, there is still a single region that covers a significant majority of the state.

AVERT calculates emissions factors separately for programs that reduce energy consump-
tion, increase solar installations, and increase wind adoption. For all policy categories besides
wind and solar, we use the first set of estimates corresponding to reduced energy consumption.
The monetized externalities using each of these three estimates are similar. Per kWh, the
monetized environmental externality in 2020 for solar, wind, and energy e�ciency programs is
$0.149, $0.145, and $0.159, respectively.170

C.1.2 Forecasting the Grid

Many of the policies we study involve a change in electricity supply or demand that persists for
multiple years. For example, we assume a wind turbine constructed as a result of the PTC will
have a lifetime of 25 years (and 30 years in our robustness analyses). Therefore, to quantify the
environmental impact of a wind turbine, we need to make assumptions about the time-path of
the electric grid.

To forecast the grid after 2022, our baseline approach uses estimates from Princeton’s RE-
PEAT Project (Jenkins & Mayfield 2023). We use their mid-range forecast that includes pre-
dicted changes to the electric grid from the Inflation Reduction Act. REPEAT forecasts the
composition of the grid by generation source at various points in time until 2050. To obtain
a complete time path we linearly interpolate between their estimates. REPEAT provides the
electric grid mix, but does not report the mix of generation sources for the marginal unit of
electricity.

To forecast the marginal emissions rate, we estimate the marginal emissions rate from a
hypothetical 2020 grid that is entirely coal or natural gas, and we multiply by the estimated
percent of the grid that is forecasted to be coal or natural gas using REPEAT estimates. The
calculation is outlined below.

In the first step, we assume that the monetized 2020 environmental externality (r2020) is
entirely from coal and natural gas. We estimate the proportion of r2020 from coal versus natural
gas by assuming that the proportion of these two generation sources in the average mix is
equivalent to the proportion in the marginal mix. Using the emissions rates (e) and usage (u)
of each generation source in 2020, we estimate that the ratio of natural gas to coal in r2020 is 1
to 1.157.

pcoal =
ecoal
eng

· ucoal

ung
= 2.429 · 0.476 = 1.157

Using CO2e output emissions rates from EPA’s eGRID, coal produces 2181 pounds of CO2e
per MWh and natural gas produces 898 lbs per MWh (EPA 2020). Therefore, one unit of coal
produces 2.429 times the amount of emissions as one unit of natural gas. Natural gas makes
up a larger share of the electricity mix in 2020 compared to coal. For every one unit of natural
gas, there are 0.476 units of coal (EPA 2020). Since the ratio of natural gas to coal is 1:1.157,
approximately 54% of the environmental externality in 2020, r2020, is from coal and 46% is from
natural gas.

170In 2007, the monetized externality for solar, wind, and energy e�ciency programs was $0.206, $0.232, and
$0.241 in 2020 dollars.
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Next, we calculate r2020 assuming that the entire electricity grid is made up of either coal
or natural gas. For coal, this is given by:

ctotal =

✓
r2020 ·

pcoal
1 + pcoal

◆
· 1

ucoal

The first term gives the environmental externality from coal in 2020. The second term
scales this to generate the environmental externality if the entire grid is made up of coal. An
analogous calculation can be done for natural gas. The 2020 electricity mix is 19.28% coal and
40.47% natural gas. Using the 2020 externality from energy e�ciency programs of $0.16, ctotal
is $0.44 and ngtotal is $0.18.

Finally, we arrive at the environmental externality per kWh by multiplying ctotal and ngtotal
by the percent of the electricity mix made up of natural gas and coal in each year using the
REPEAT forecasts. Appendix Figure 2 Panel B shows the evolution of the environmental
externality over time.

We apply a similar process to construct the externality across time for individual states.
REPEAT does not report the state or region-level grid mix over time. Instead, they report the
combustion share of each state over time. Using linear interpolation, we construct a dataset of
the combustion share for each state from 2022-2050. Instead of separately identifying natural
gas and coal, we split generation into clean and dirty sources. We assume the entire 2020
environmental externality is from coal and natural gas sources. Analogous to the US-wide
calculation, we construct the externality assuming the entire grid is dirty and multiply this by
the forecasted dirty proportion using the combustion share estimates from Princeton.

For both in-context and US-wide estimates, we assume that the marginal emissions rate
stays constant after 2050. Changes in the monetized environmental externality after 2050 are
driven by changes in the social cost.

For robustness, we include MVPF estimates for a ‘dirty’ and ‘clean’ grid. Our dirty grid
specification uses the state’s grid that has the highest monetized environmental externality,
and the clean grid specification does the opposite. From 2005-2020, the cleanest state was
California. The dirtiest state switches between the Mid-Atlantic (2005-2015) and the Midwest
(2016-2020).

C.1.3 Measuring Electric Utility Profits

Electric utilities are a regulated industry with natural monopolies. To estimate the markup on
electricity, we use the levelized cost of electricity (LCOE) and the retail price of electricity. We
construct the total LCOE per MWh at the state and national level by taking an average of
the LCOEs for each generation source weighted by the share of the grid each source represents.
We use the total LCOE not including tax credits for new plants coming online in 2020. For
wind and solar, we use the realized cost from projects installed in 2020 from the Department of
Energy of $32.99 and $34.00, respectively (Wiser et al. n.d., Bolinger et al. 2021). The EIA’s
2018 Annual Energy Outlook provides the LCOE for natural gas plants coming online in 2020
of $49.74 (EIA 2023a). For other sources, we use the EIA’s 2015 Annual Energy Outlook which
provides the LCOEs for coal, nuclear, hydroelectric, biomass, and geothermal plants coming
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online in 2020. 171 For generation sources that do not have LCOE data, we exclude them and
re-weight the included sources. We calculate the average LCOE per MWh for the US in 2020
of $74.00 per MWh.

To account for the cost of delivering electricity from the source of generation to the point
of use, we add distribution costs to the LCOE (EIA 2023). 172 For the price of electricity, we
use annual data on the retail price of electricity by state from the the BLS (BLS 2024). 173

Markups generate externalities only when consumption is shifted from goods with low to
those with high markups. As a result, the precise goal of our analysis is to measure the extent
to which markups di↵er from the average economy-wide markup. De Loecker et al. (2020) find
that the overall economy-wide markup is 8%. In our baseline specification, we also assume
that 28% of utilities are publicly owned (EIA 2019) and that the e↵ective corporate tax rate
on private utilities is 10% (DOT 2016). Therefore, the producer WTP per additional kWh
consumed is:

WTPprod =
�
p�

�
LCOE + ctd

�
· (1 +m)

�
· (1� ⌧) · (1� ↵)

where p is the retail price, LCOE is the generation-weighted average LCOE, ctd is the
transmission and distribution cost, m is the economy-wide markup, ⌧ is the tax rate, and ↵ is
the proportion of utilities that are publicly owned. For the US in 2020, the producer profit per
MWh is $11.03.

For the in-context version of these estimates, we use state-specific electricity prices and
electricity generation mixes. m, ctd, ⌧ , and ↵ are constant across geography and time. The
EIA does not report state-specific estimates of the LCOE, but they do report minimum and
maximum values for the US for each generation source. To construct state-specific estimates of
cost, we create 50 equally spaced bins from the minimum to the maximum LCOE for each gen-
eration source and assign states into each bin using their ranking in the BLS’ power generation
industry wage index (BLS 2022).

A markup on utility profits a↵ects government cost through profit tax revenue from utilities.
Since we assume that 28% of utilities are publicly owned, e↵ective corporate tax rates are 10%,
and the e↵ective tax rate on public utilities is 100%, the fiscal externality from utility profits
is given by:

FEprod =
�
P �

�
LCOE + ctd

�
· (1 +m)

�
· (↵ + (1� ↵) · ⌧)

In 2020, the fiscal externality from utility profits per MWh is $5.99. The sum of the
producer willingness to pay and government fiscal externality corresponds to a markup in
excess of the economy-wide markup of 12.9%. For years prior to 2020, we assume the ratio of�
LCOE + ctd

�
/p is constant over time and use retail prices from the BLS.

171The LCOEs we use for coal, nuclear, hydroelectric, biomass, and geothermal are $105.67, $105.78, $92.78,
$111.67, and $53.11 (EIA 2023a)
172The EIA reports distribution costs of $32 per MWh in 2020, which are approximately 43% of the average

2020 LCOE
173The price of electricity per MWh in the US in 2020 is $131.50. Among the 48 contiguous states, the most

expensive state, Connecticut, and least expensive state, Louisiana, had prices of $227.10 and $96.70, respectively
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C.1.4 Rebound

For policies that cause an exogenous shock to electricity demand or supply, it is natural to
expect that the shock’s impact on the supply or demand curve will lead to a change in prices,
and therefore quantity of electricity consumed. This so-called ”rebound e↵ect” is generally not
captured by the reduced form elasticities estimated in the papers we consider. We therefore use
a canonical supply and demand framework combined with estimates of the supply and demand
elasticities for electricity to think about and include a correction for this rebound e↵ect in our
estimates.

Let Q(p) and S(p) denote the quantity demanded and supplied at price p. We now imagine
there is a shock that expands the supply of electricity by C (e.g., a new wind turbine). Unless
electricity demand is perfectly inelastic or electricity supply is perfect elastic, we would expect
that an expansion in the supply of electricity as a result of a subsidy would not lead to a 1-1
reduction in dirty energy. We can model a positive electricity shock (C) to supply S(p) from
policy such as a wind PTC or solar ITC as being given by:

Q(p) = S(p)� C

Total di↵erentiation gives us a change in price:

dp =
�dC

S 0 �Q0

which means the total change in the production of electricity is given by

S 0dp = �dC ⇤R

where R is defined as

R =
1

1� Q0

S0

Transforming this to elasticities, we have

Q0

S 0 =
Q0

Q

S

S 0
Q

S

=
✏demand
Q

✏supplyS

The rebound e↵ect, defined as the percent of the supply shock that is o↵set by an increase
in demand, is 1 - R. A higher rebound e↵ect means that electricity price reductions from wind
PTCs will lead to significant increases in the quantity of electricity demanded, o↵setting the
environmental impact of the initial PTC.

In our baseline specification, we construct a demand elasticity for electricity using a weighted
average of demand elasticities from residential, commercial, and industrial electricity demand.
We use a commercial and residential demand elasticity from Serletis et al. (2010) of -0.134
and -0.287, respectively. We use an industrial demand elasticity of -0.125 from Jones (2014).
These elasticities are weighted by their respective share of total electricity demand resulting
in a demand elasticity of -0.19 (EIA 2023c). This estimate is similar to other estimates in the
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literature (EIA 2021b, Deryugina et al. 2020). For supply, we similarly construct a weighted
average of the elasticities of each generation source. We follow the approach of the Department
of Interior’s MarketSim model and use the supply elasticities by source which are derived from
the EIA’s 2015 and 2020 Annual Energy Outlook (DOI 2021, EIA 2023a). The resulting supply
elasticity is 0.78.

Using the demand elasticity of -0.19 and the supply elasticity of 0.78, we get our baseline
estimate of the rebound e↵ect of 20%.

Appendix Figure 9 explores the robustness of our rebound estimate to a range of supply
and demand elasticities. The short to medium range electricity demand elasticity estimates
generally hover around the 0 to 0.4 range. Deryugina et al. (2020) exploit exogenous shocks in
retail electricity prices in Illinois to estimates a residential price elasticity of -0.27. The EIA’s
2020 Annual Energy Outlook reports price elasticities for residential and commercial electricity
demand. Weighting by each sector’s market share, this corresponds to a demand elasticity
of -0.16 (EIA 2021b). These estimates are in the range of our baseline value of -0.19. The
availability of electricity supply elasticities in the literature is limited. However, for a fixed
-0.19 demand elasticity, the rebound e↵ect is robust to a range of supply elasticities. Assuming
the electricity supply elasticity is greater than 0.4, which is consistent with all of the solar and
wind elasticities in our sample, the rebound has an upper bound of 33%.

C.2 Natural gas externalities

Some weatherization and appliance rebate policies induce changes in households’ consumption
of natural gas. These changes lead to environmental externalities as well as changes in producer
profits arising from imperfect competition of natural gas distribution. In this section, we provide
a detailed explanation of how we construct these externalities in each region of the country over
time.

C.2.1 Environmental Externalities

We assume that combustion emissions from one MMBtu of natural gas do not vary over place.
We use emissions factors from the EPA’s eGRID from 2011-2020 for CO2, CH4, and N2O
(EPA 2024c). eGRID does not report emissions factors for local pollutants associated with
natural gas combustion. The emissions factors are constant over time for CH4 and N2O. For
the CO2 emissions factor, the pounds of CO2 per MMBtu increased from 116.89 in 2011 to
116.98 in 2020. For years prior to 2011, we use the 2011 emissions factor. Applying our baseline
social costs to these emissions factors result in a monetized 2020 environmental externality from
natural gas of $10.25.

Following the approach in Appendix Section D, we apply a rebound e↵ect to policy-induced
changes in natural gas consumption. We use a natural gas supply elasticity of 1.50 from DOI
(2021), which is the same natural gas elasticity as the one feeding into the average electricity
supply elasticity. We use a natural gas demand elasticity of 0.20, which is the middle of the
range of estimates from Au↵hammer & Rubin (2018). These elasticities lead to a natural gas
rebound e↵ect of 11.76%.
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C.2.2 Measuring Natural Gas Profits

Similar to electric utilities, we assume that natural gas utility companies experience profits
arising from imperfect competition. To measure markups, we take the di↵erence between the
retail price of natural gas and the citygate price of natural gas. We take both of these prices
from EIA (2023e) for each state from 2000-2022. In 2020, natural gas prices hit a record low
partly as a result of the COVID-19 pandemic (EIA 2021a). Therefore, we use the markup in
2021 in our baseline 2020 MVPFs. Following our approach for electricity markups, we subtract
the 8% economy-wide markup from our natural gas markup estimate. This results in a baseline
markup for the US of 42.57%.

To construct the producer willingness to pay and fiscal externality in levels per MMBtu, we
assume a 10% e↵ective corporate tax rate on profits for private natural gas utilities and a 100%
tax rate on public utilities (DOT 2016). Approximately 5% of natural gas utilities are publicly
owned (EIA 2020b). Therefore, the producer profit and fiscal externality per MMBtu is $4.40
and $0.75, respectively.

C.3 Gasoline Externalities

A key input into our analysis of gasoline taxes, EV and HEV subsidies, and vehicle retire-
ment programs is the dollar value of externalities generated by gasoline-powered, light-duty
vehicles.174 In this section, we discuss our approach to measuring the dollar value of the exter-
nalities generated by these vehicles. We provide a table (Appendix Table 12) containing the
values of specific externalities in 2020, as well as a figure (Appendix Figure 2) that shows how
the values of vehicle externalities have varied over time (1990–2022). All externalities are re-
ported in terms of dollars per gallon of gasoline, although we note below that some externalities
arise per mile driven as opposed to per gallon of gasoline consumed. We factor this distinction
into our externality measures for EVs, HEVs, and vehicle retirement programs.

We consider two types of externalities: pollution and driving externalities. The driving
externalities we consider are accidents, congestion, and pollution from tire and brake wear.175

Section C.3.1 presents our calculations for pollution externalities. Section C.3.2 presents our
calculations for accidents and congestion. Section C.3.3 consolidates these externalities into the
average externality for a gallon of gas and discusses how our results vary as a function of time.
Unless otherwise noted, all dollar values are in 2020 dollars.

174The EPA’s definition of light-duty vehicles includes two regulatory classes: passenger cars and light trucks
(EPA 2023b). Light trucks include minivans, pickups, and other vans, and passenger cars consist of coupes,
sedans, and wagons. SUVs can be classified as either passenger cars or light trucks depending on the vehicle’s
characteristics. Light-duty vehicles make up approximately 95% of vehicles on the road (DOE 2022). We
consider di↵erences between medium- and heavy-duty vehicles only when evaluating the externalities from
diesel fuel.
175In our review of the literature, other driving externalities that have been measured seem to be negligible for

light-duty vehicles. Noise pollution, for example, is much larger on a per-mile basis for buses and heavy-duty
trucks. The same holds for road damage, with heavy-duty trucks appearing to cause the most damage per mile
(Davis 2017, FHWA 1997).

151



C.3.1 Per-Gallon Externalities

The use of gas-powered vehicles results in pollution from a range of sources. We consider
two categories of emissions in developing monetized estimates of pollution externalities from
light-duty vehicles. The first includes emissions that result from producing a gallon of gasoline.
We call these “upstream” emissions. The second includes emissions released during on-road
driving. We ignore emissions from idling.

Upstream Pollution A vehicle’s upstream emissions include the pollution released while
extracting and refining crude oil. We decompose upstream emissions into well-to-refinery emis-
sions and refinery emissions. Well-to-refinery emissions include emissions released while explor-
ing for, extracting, processing, and transporting crude from the well to the refinery. We only
consider greenhouse gases released during this process.176 Refinery emissions include both the
local air pollutants and greenhouse gases released by petroleum refineries. We ignore emissions
generated while transporting gasoline from the refinery to the pump. We assume gas taxes do
not a↵ect vehicle production decisions and therefore exclude vehicle manufacturing emissions
from these MVPFs. We also ignore the e↵ects on vehicle scrappage and downstream e↵ects on
the used-vehicle market, as we assume the price elasticity of gasoline captures the total e↵ect
of the gasoline price on gas consumption.

For both processes, we estimate upstream emissions for a gallon of gasoline by dividing the
pollution released per gallon of crude input by the gallons of petroleum product produced from
one barrel of crude oil. Formally, for each source of pollution, s, equal to the sourcing of crude
oil or the refining process, we write Upstreamy,p,s of pollutant p as

Upstreamy,p,s =
Pollutiony,p,s

RefineryY ieldy
(68)

where Pollutiony,p,s represents the metric tons of pollutant, p, released per barrel of crude
oil from source s in year y, and RefineryY ieldy refers to the gallons of petroleum product
generated from one barrel of crude. We calculate refinery yield for a given year by dividing
the total gallons of output from refiners and blenders in that year by the total barrels of
crude that entered refiners and blenders that year (EIA 2024f,e).177 In 2020, one barrel of
crude oil produced on average 44.3 gallons of petroleum product.178 The national refinery yield
has remained roughly constant since the EIA began tracking refinery production data. The
following paragraphs explain how we obtain values for the pollution emitted from a barrel of
crude, Pollutiony,p,s.

176Since we consider petroleum extracted outside of the US, valuing local air pollution from this process would
require both information on where emissions are released and how to value local damages outside of the United
States.
177The EIA tracks inputs for three types of facilities (“refiners,” “blenders,” and “refiners and blenders”) in

its “U.S. Refinery and Blender Net Input of Crude Oil and Petroleum Products (Thousand Barrels)” series. We
look at refiners and blenders because data for these facilities are available for more years, and because these
facilities tend to have greater outputs than the others.
178Output data come from the EIA’s “U.S. Refinery and Blender Net Production of Crude Oil and Petroleum

Products (Thousand Barrels)” series. One barrel of crude contains 42 U.S. gallons. Refiners and blenders have
a “processing gain” (output outweighs input in a given period) due to the specific gravity of the petroleum
products refined. If the products refined have a lower specific gravity than crude oil, refiners will experience a
processing gain and produce more than 42 gallons of product from one barrel of crude (EIA 2024g).
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We begin with pollution generated during the production and transportation of crude oil
from the well to the refinery. We use estimates from Masnadi et al. (2018) (Authors’ Figure
1), who estimate well-to-refinery emissions to be 10.3 grams of CO2 equivalent (CO2e) per
megajoule of crude produced.179 One barrel of crude oil contains 6,119 megajoules (DOE
2020). Producing one barrel of crude thus yields 63,014 grams of CO2e. We assume well-
to-refinery emissions have remained constant over time. Using the 2020 refinery yield of 44.3
gallons of petroleum product per barrel of crude, sourcing the crude needed to produce one
gallon of petroleum product releases 1,421.5 grams of CO2e. This allocation method assigns
pollution from crude to its downstream products (i.e., motor fuel and diesel fuel, among others)
in proportion to the quantity produced. CO2 and CH4 make up 65% and 34% of total emissions,
respectively, with V OC and N2O making up the remaining one percent.180 We then divide the
share of total CO2e attributable to CH4 and N2O by the global warming potential (GWP)
factors used by the authors to convert grams of non-CO2 pollutant, p, to grams of CO2e. This
gives us grams of CO2, CH4, and N2O released during the well-to-refinery process. We apply
each pollutant’s respective social cost to value well-to-refinery emissions in dollars per gallon
of petroleum product.181

We then consider the pollution released by US petroleum refineries. From 1990 onward,
the Inventory of U.S. Greenhouse Gas Emissions and Sinks (“the Inventory”) collects annual,
facility-level emissions data from domestic refineries for three greenhouse gases (CO2, CH4, and
N2O) released during the “Crude Refining” activity (Inventory Tables 3-45, 3-47, and 3-49).
The National Emissions Inventory (NEI) reports emissions of local air pollutants by source
every three years (2008–2020), which we use to calculate emissions from refineries for six local
pollutants (NH3, CO, HC, NOX , PM2.5, and SO2). We interpolate to estimate emissions
for unobserved years between 2008 and 2020. For years before 2008, we assume petroleum
refineries emitted the same amount of pollutant, p, that refineries emitted in 2008. We do the
same for years after 2020. For all pollutants, we calculate emissions per gallon of petroleum
product by dividing total emissions by the total barrels of crude oil that entered refiners and
blenders that year (EIA 2024e). We then divide pollution released per barrel of crude oil by the
refinery yield.182 We again apply each pollutant’s corresponding social cost to value emissions
in dollars. We aggregate emissions for a pollutant, p, in year y from both upstream sources to
construct an annual upstream emission rate for each pollutant, in dollars per gallon.

All upstream emission rates are calculated per gallon of petroleum product. However, a
gallon of gasoline purchased in the US is not made up of only gasoline. To account for the
share of ethanol in gasoline, we scale down each upstream emission rate in year y by the
share of fuel ethanol in finished motor gasoline. We calculate this share using the approach
outlined by the EIA (EIA 2023b). This approach assumes the ratio of the quantity of motor
gasoline supplied to the quantity of fuel ethanol supplied (excluding denaturants, losses, and

179This reflects the authors’ global volume-weighted-average. We use this global value because the US continues
to import a large volume of crude oil—8.33 million barrels per day in 2022 from 80 di↵erent countries (EIA
2023d). For policies that target crude oil production in specific countries, we rely on the authors’ country-specific
carbon intensity measurements.
180We assume N2O and V OC each make up half of the remaining percent of the pollution. Since we calculate

global damages from VOC using the same GWP as the authors we leave this pollutant in terms of CO2e.
181Since the social cost of non-CO2 pollutant, p, is roughly equal to the social cost of carbon scaled by the

GWP factor of pollutant, p, this approach generates approximately the same results if we were to apply our
preferred social cost of carbon to the grams of CO2e estimate.
182This is equivalent to dividing total emissions in a given year by total gallons of output from refiners and

blenders that year.
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co-products) equals the percentage share of ethanol in finished motor gasoline. The quantity
of motor gasoline supplied comes from the EIA’s “U.S. Product Supplied of Finished Motor
Gasoline” series. The quantity of fuel ethanol supplied comes from the EIA’s Monthly Energy
Review (Table 10.3). For 2020, we multiply all upstream emissions by 0.95 to account for the
4.9% of ethanol in gasoline. We describe below how we adjust on-road emissions for the share
of ethanol in gasoline.

After scaling down upstream emissions to account for the share of gasoline not derived from
petroleum, we add upstream emissions from ethanol production. We only consider greenhouse
gas emissions from this process. We use estimates of the carbon intensity of ethanol production
from Lee et al. (2021). We allow the carbon intensity of ethanol production to vary over time.183

We add to this value an estimate of the carbon intensity of land-use change associated with
ethanol production (7.4 grams of CO2e per MJ) also from Lee et al. (2021). We hold this value
constant overtime. We multiply the combined carbon intensity of ethanol production by the
share of ethanol in gasoline, and then by the social cost of carbon in a given year to monetize
these damages. Increased emissions from ethanol production are added to the upstream CO2

estimate we present in Appendix Table 12. After adjusting for the ethanol content of gasoline,
upstream carbon dioxide emissions increase from $0.18 to $0.22 per gallon.

On-Road Pollution Next, we consider emissions released while a vehicle is in use. For each
pollutant, we proceed in three steps. First, we estimate the average emission rate (measured
in grams per gallon) associated with a vehicle from a given model year. Second, we average
emission rates across model years to measure the average emission rate for the light-duty vehicle
fleet in a given year. This fleet-wide emission rate reflects both the composition of the fleet
in any given year as well as the driving behavior of cars of a particular age.184 Finally, we
translate annual emission rates for a particular pollutant into dollar terms using each pollutant’s
corresponding social cost. This gives us the externality value for a given pollutant in a particular
year in dollars per gallon.

The EPA requires new vehicles to undergo emissions testing to ensure vehicles meet regula-
tory standards at the time of production (EPA 2024a). For some pollutants, we need to account
for the fact that a vehicle’s emission control system may become less e↵ective over time.185. We
split our analysis of on-road pollution into emissions that increase with vehicle age and those
less a↵ected by vehicle usage.

We begin with emissions that change as a vehicle ages, which consist of carbon monoxide
(CO), hydrocarbons, (HC), and oxides of nitrogen (NOX). We follow Jacobsen et al. (2023),
who pair comprehensive data on the initial emission rates of new light-duty vehicles from model
years 1957 onward with smog check data from Colorado’s IM240 test to estimate how emissions
increase with vehicle age. The authors calculate annual decay rates (e.g., the annual increase
in emissions per mile) for CO, HC, and NOX of 3.6%, 5.6%, and 4.0%, respectively. We

183This estimate of the carbon intensity of ethanol includes emissions from activities such as increased farming,
ethanol processing, and increased fertilizer and chemical usage. Lee et al. (2021) estimate carbon intensities
(in grams of CO2e per MJ) for 2005 through 2019. We assume ethanol production for years before 2005 had
the same carbon intensity as estimated in 2005, and that years after 2019 had the same carbon intensity as
estimated in 2019. We assume one gallon of pure ethanol contains approximately 89 MJ of energy (AFDC
2024c).
184For policies that displace a new vehicle, we omit this step but still consider changes in a vehicle’s emission

rate over its lifetime. See Section C.3.3 below.
185Catalytic converters, for example, deteriorate over a vehicle’s lifetime (Baronick et al. 2000)
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follow the authors in assuming that vehicles do not decay after age 19. We also assume that
vehicles from model years earlier than 1975 do not decay, as these vehicles predate contemporary
emissions standards. For vehicles produced after 1975, AgeFactorp does not di↵er with model
year (e.g., the emissions control systems of newer vehicle models do not decay at di↵erent rates).
Combining these parameters with data on initial emission rates and vehicle fuel economy, we
approximate the emission rate of pollutant, p, measured in year y for a vehicle produced in
model year m as

EmissionRatey,m,p| {z }
Grams per Gallon

= EmissionRatem,p| {z }
Grams per Mile

(1 + AgeFactorp)
y�m ⇥ FuelEconomym| {z }

Miles per Gallon

(69)

where EmissionRatem,p is the initial emission rate of pollutant, p, for a vehicle from model
year m; FuelEconomym is the average fuel economy of a vehicle from model year m; and
AgeFactorp is the annual rate of deterioration for pollutant, p, for a vehicle of age y �m.

Initial per-mile emission rates (EmissionRatem,p) for CO, NOX , and HC for model years
1957 onward come from Jacobsen et al. (2023), who compile these data from a range of
sources.186 We assume no vehicles from model years earlier than 1957 remain in use. The
EPA reports average fuel economy by model year (FuelEconomym). Fuel economy data for
model years 1957–1975 come from EPA (1973), and data for model years 1975 onward come
from the Automotive Trends Report (EPA 2023b).187 Both series are weighted by vehicle sales.
We assume a vehicle’s fuel economy does not change with the vehicle’s age.

ForNOX , CO, andHC, we account for the fact that fuel containing ethanol burns di↵erently
than pure gasoline. To do so, we use emissions adjustment factors from Hubbard et al. (2014),
who report emissions rates from vehicles using fuel containing di↵erent amounts of ethanol.188

Using the emission rates reported in the authors’ Tables S1, S2, and S3, we find that vehicles
running on fuel with 9.8% ethanol emit 13.2% less NOX , 6.8% more CO, and 13% more HC
relative to a vehicle running on fuel without ethanol. Multiplying these percent di↵erences by
the ratio of the observed share of ethanol in gasoline in a given year to the share of ethanol used
in these emissions tests (9.8%) allows us to account for di↵erences in the ethanol content of the

186The authors calculate unweighted emission rates for model years 1957 through 2020 and sales-weighted
emission rates for model years 1981 through 2015. The authors note that both series have similar levels and
trends. We use unweighted emission rates to capture more model years. We apply a linear interpolation to
account for model years with missing emission rates. Only 1994 and 1995 lack emission rates for all three
measured pollutants, and 1973 is missing an emission rate for NOX . We assume no further improvements to
vehicle emissions have been made for model years later than 2020.
187The earlier fuel economy series reports a national average fuel economy of 15.6 miles per gallon in 1975.

The Automotive Trends Report, however, reports a national average fuel economy of 13.1 miles per gallon for
1975. So that each series has the same average fuel economy in 1975, we calculate the di↵erence between each
series’ estimate of the 1975 average fuel economy and add this di↵erence to each estimate in the earlier series.
After this transformation, each series has the same average fuel economy for 1975.
188We do not adjust the emission rates for CH4 or N2O because estimates from Lee et al. (2021) include CH4

and N2O emissions from ethanol combustion. While we assume CO2 from ethanol combustion is entirely o↵set,
we cannot assume the same for CH4 and N2O. To avoid double counting damages from these two greenhouse
gases, we do not adjust our emission rates for CH4 and N2O using adjustment coe�cients from Hubbard et al.
(2014). We cannot isolate CH4 and N2O emissions from Lee et al. (2021) and therefore leave these damages as
part of our reported upstream CO2 damages even though these emissions are released during on-road operation.
We note that CH4 and N2O emissions from ethanol combustion are the smallest contributors to ethanol’s life
cycle carbon intensity estimated by Lee et al. (2021).
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fuel used in the authors’ tests and the average gallon of gasoline, assuming a linear relationship
between ethanol content and emission rates. These adjustments do not noticeably a↵ect our
externalities in 2020 given these pollutants’ low initial emission rates; in earlier years (when
emission rates were larger), ethanol made up too small a share of gasoline for these adjustments
to a↵ect our conclusions.

Next, we consider pollutants for which it is reasonable to assume that the impact of vehicle
age on emissions is negligible (AgeFactorp ⇡ 0). This includes carbon dioxide (CO2), sulfur
dioxide (SO2), particulate matter (PM2.5), methane (CH4), and nitrous oxide (N2O). CO2

and SO2 emissions proceed from the carbon and sulfur content of a gallon of gasoline, meaning
per-gallon emission rates will not vary with model year.

We calculate on-road CO2 emissions using the emissions coe�cient for motor gasoline (8,786
grams per gallon) reported by the EIA (2023b). As described above, we adjust our externalities
to account for the share of ethanol in finished motor gasoline. For CO2, we assume the share
of gasoline that is ethanol is non-emissive, as the carbon dioxide taken out of the atmosphere
while growing the organic material needed for ethanol is o↵set by the carbon dioxide emitted
when ethanol is burned (EIA 2023b, AFDC 2024b). We allow the share of ethanol in gasoline
to vary over time. We calculate SO2 emissions using the average sulfur content of a gallon of
gasoline (EPA 2017).189

Because catalytic converters do not a↵ect PM2.5, CH4, and N2O emissions, we assume
these three pollutants are also una↵ected by the deterioration of emission control systems (IPA
2024). Emission rates for these three pollutants for model years 1990 onward come fromMOVES
(MOtor Vehicle Emissions Simulator), a tool designed by the EPA to quantify pollution from
mobile sources (EPA 2024d).190 We use sales weights from the EPA (2023b) to average across
vehicle classes included in MOVES’ definition of light-duty vehicles (passenger cars and trucks
and light-duty commercial trucks).191 We assume emissions for vehicles released before 1990
emit at the same rate as the average new vehicle from 1990, and that vehicles produced after
2020 emit at the same rate as the average new vehicle from 2020.192

Once we have emission rates for each pollutant by model year, we compute the average
emission rate for the entire fleet in a given year using the distribution of model years on the
road in a given year and data on annual gasoline consumption by vehicle age. To measure this,
we use data on the age distribution and miles traveled for light-duty vehicles from the National
Household Transportation Survey (FHWA 2017).193 This survey provides a snapshot of the

189The EIA reports the average annual sulfur content of gasoline for 1997–2016. For years before 1997, we
assume the sulfur content of gasoline equals the sulfur content observed in 1997. For 2017 onward, we set sulfur
content equal to Tier 3 Motor Vehicle Emission and Fuel Standards (10 ppm) (EPA 2017). To convert from ppm
to grams per gallon, we assume a density of 6.1 pounds per gallon (Hawley 2022). This results in a conversion
rate from ppm to grams per gallon of 0.0028 (e.g., 30 ppm is equivalent to approximately 0.08 grams per gallon
of gasoline).
190We use emission rates derived from MOVES but reported by Argonne National Laboratory’s Greenhouse

Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model (Argonne National Laboratory
2013)
191MOVES includes these three vehicle classes in its definition of light-duty vehicles (EPA 2016). These

categories do not align with the vehicle classes used in the U.S. EPA’s fuel economy data set. To link these
data sets, we assume “Passenger Cars” corresponds with the “All Cars” classification used in the Automotive
Trends Report, “Passenger Truck” with the “Truck SUV” classification, and “Light-Duty Commercial Truck”
with the ”Minivan/Van” and ”Pickup” classifications.
192As described below, emission rates for PM2.5 from tires and brakes also come from MOVES. All details

described in this paragraph apply to our treatment of PM2.5 from tires and brakes.
193When using data from the NHTS, we exclude recreational vehicles and motorcycles, as these are not included
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vehicles on the road in 2017, which enables us to measure both the fraction of cars of a given
age and the average annual vehicle miles traveled by vehicles of a given age from the sample
of respondents who indicated their vehicle’s age and average annual VMT. We assume model
years are distributed evenly within bins when reported as ranges. We assume VMT for vehicles
older than 33 years equals the average VMT at age 33. We assume the age distribution of the
fleet and the distribution of VMT by vehicle age have remained constant over time.

We construct weights for each model year by multiplying the annual gallons of gasoline
consumed by a vehicle that age and the share of vehicles on the road of that age. We calculate
annual gallons of gasoline consumed by dividing the VMT by a vehicle of a given age by
the vehicle’s fuel economy. For example, in 2020, a vehicle from model year 2020 traveled
approximately 13,962 miles in its first year. With a fuel economy of 25.38 MPG, this vehicle
would use 550 gallons of gas in its first year. Multiplying by 0.065 (since 6.5% of vehicles in
the NHTS were one year old) then gives us the weight we assign to vehicles of model year 2020.
We use this weight to calculate fleet-wide average emission rates for externalities that arise
per-gallon of gasoline used.

All fleet-wide emission rates considered thus far have been expressed in grams of pollution
per gallon. We convert emission rates to metric tons per gallon and then multiply each emission
rate by its corresponding social cost to monetize damages.

C.3.2 Per-Mile Externalities

Many vehicle externalities are closely linked to gasoline consumption, and the value of these
externalities is often estimated on a per-gallon basis. We assume all exhaust pollution arises per-
gallon of gasoline burned.194 However, some vehicle externalities arise on a per-mile basis. These
externalities are most naturally measured per mile of driving. We consider three externalities
that arise per-mile-traveled: PM2.5 from tire and brake wear, accidents, and congestion.

The per-mile PM2.5 from tire and brake wear emission rate comes from MOVES (Argonne
National Laboratory 2013), the same source from where we obtain per-mile emission rates for
exhaust PM2.5.195 To value accidents, we use the annual fatalities avoided from a 1% reduction
in VMT (263 fatalities avoided) estimated in Jacobsen (2013b), apply the EPA’s VSL of $9.5
million (EPA 2010), and divide the product of these terms by the number of miles reduced from
a 1% reduction in total VMT in 2008 (30 billion miles), the year from which most of Jacobsen’s
data come (AFDC 2024a).196 This calculation yields an average accident externality of $0.08
per mile. To value for congestion, we average per-mile externality estimates from three papers—
Couture et al. (2018) ($0.02), Parry & Small (2005) ($0.05), and Parry et al. (2014) ($0.03)—for

in the Automotive Trends Report.
194If we assumed on-road local air pollution (except SO2, which is a function of fuel composition) arose per-

mile traveled instead of per-gallon consumed, the total externality reported in Appendix Table 12 would only
fall by around $0.10 in 2020, assuming 52% of the price elasticity of gasoline arises from changes in VMT. This
small change follows from the fact that local on-road pollution is a relatively small share of the total externality
from a gallon of gasoline in 2020.
195As noted above, we handle emission rates for PM2.5 from tires and brakes the same way we handle other

emission rates from MOVES. Namely, we assume emissions for vehicles released before 1990 emit at the same
rate as the average new vehicle from 1990, and that vehicles produced after 2020 emit at the same rate as the
average new vehicle from 2020.
196In particular, we use the fatalities avoided calculated in the author’s Appendix G of Jacobsen (2013b), where

the author applies his main text findings to a gasoline tax.
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an average congestion externality of $0.03 per mile.197 We assume vehicles of di↵erent model
years and vehicle types impose the same per-mile accident and congestion externality. Accidents
and congestion are local externalities, and we do not vary these values over time.

For externalities that arise per-mile traveled, we augment the weighting approach described
above to assign greater weight to vehicles of a given age that travel more miles rather than
those that consume more gasoline. This approach does not a↵ect the per-mile accidents and
congestion rate, as these do not vary with model year, although PM2.5 from tires and brakes
does. We also use a weighting approach to calculate a fleet-wide average fuel economy that lets
us express per-mile externalities in per-gallon terms. Weighting by the product of age shares
and VMT, we obtain an average fuel economy of 23.1 MPG. Multiplying per-mile emission
rates by this VMT- and age-weighted fuel economy yields per-gallon estimates for our three
per-mile externalities.

Changes in gasoline consumption do not arise entirely from changes in VMT. As a result,
we must know how much of a change in gasoline consumption us due to changes in VMT.
We follow Small & Van Dender (2007) in assuming that changes in VMT account for 52% of
the price elasticity of gasoline. We refer to this share of the own price elasticity that arises
from VMT changes as �. One could, in practice, multiply the price elasticity of gasoline or
the per-gallon externality by � to account for the fact that changes in gasoline usage do not
stem entirely from changes in VMT. In Appendix Table 12, we multiply accidents, congestion,
and PM2.5 from tires and brakes by our preferred value of � (0.52). This approach allows us
to compare across externalities before applying an elasticity. We describe in Appendix E.5 an
alternative approach where we apply � to the price elasticity of gasoline; each approach yields
identical conclusions.

C.3.3 Summary of Fleet-wide Gasoline Externalities

Appendix Table 12 provides per-gallon estimates of each vehicle externality, the total exter-
nalities from pollution and driving, and the total vehicle externality for 2020. CO and HC
include both local and global damages. On-road PM2.5 includes emissions from vehicle exhaust
and brake and tire wear. In 2020, PM2.5 from exhaust contributed $0.06 per gallon to on-road
PM2.5 emissions. PM2.5 from brake and tire wear made up the remaining $0.02 per gallon. Ac-
cidents, congestion, and PM2.5 have been scaled by our preferred value of � (0.52), as described
above. We do not observe on-road NH3. We note that Appendix Table 12 only applies when
considering a change in gasoline usage by the average vehicle in the fleet in a given year. Below,
we describe how to calculate externalities for policies that target new vehicles or vehicles with
specific characteristics (e.g., higher-than-average fuel economies).

In 2020, approximately 60% of the total externality produced by the average light-duty, gas-
powered vehicle came from (upstream and on-road) pollution. Upstream emissions contributed
12%, or $0.26, of total pollution damages. CO2 made up 86% of total pollution damages and
52% of the total vehicle externality. Local air pollution made up 12% of total pollution damages.
Accidents and congestion represented 40% of the total externality in 2020, or $1.40 combined.
Our results are similar for 2020 and 2022, with rising social costs driving the $0.09 di↵erence.

Appendix Figure 2 illustrates how the externalities from an additional gallon of gas con-
sumed by light-duty, gasoline-powered vehicles have evolved (1990–2022). On-road CO2 pol-

197For Parry et al. (2014), we use the author’s estimate constructed using more granular tra�c delay data.
This estimate is 41 percent smaller than their initial estimate but is more in line with previous findings.

158



lution has increased both in magnitude and as a share of the total externality from the rising
SCC. Total CO2 damages increased from $0.68 per gallon in 1990 to $1.61 per gallon in 2020.
Accidents and congestion have increased over time as the average annual fuel economy of the ve-
hicle fleet has improved, as vehicles can drive more on a single gallon of gas. In dollar-per-gallon
terms, the combined cost of accidents and congestion has grown from $1.14 in 1990 to $1.40
per gallon in 2020. On-road non-CO2 pollution has experienced the most significant decline
since 1990 due to improvements in the emission rates of new vehicle models, as documented
by Jacobsen et al. (2023). In 1990, non-CO2 pollution imposed an external cost of $1.57 per
gallon or 44% of the total externality in 1990. By contrast, total on-road non-CO2 pollution
contributed $0.25 in 2020 or only 7% of the total externality. Between 1990 and 2020, NOX

fell from $0.85 to $0.08 per gallon, HC from $0.23 to $0.04 per gallon, CO from $0.21 to $0.05,
and total PM2.5 from $0.20 to $0.09 per gallon.

C.3.4 Lifetime Vehicle Externalities

In addition to valuing the externality imposed by consuming one gallon of gasoline, we estimate
the total damages a given vehicle generates over its lifetime. Policy-specific appendices describe
which values enter into our calculations. Here, we give a broad overview of how we move between
gasoline externalities to damages measured over a vehicle’s lifetime.

For policies that a↵ect new vehicles, we perform the calculations described above but focus
on emission rates specific to the model year of the car being purchased. For example, if a subsidy
induces the purchase of a vehicle in 2020, we consider the emission rates of a vehicle purchased
in 2020, rather than a fleet-wide average emission rate. We still account for changes in the
emission rate over the vehicle’s lifetime due to the decay of emissions abatement technologies
and continue to assume vehicles do not decay after age nineteen. We also use the fuel economy
associated with the vehicle’s model year rather than a fleet-average fuel economy. We hold
upstream damages constant across new and fleet-average vehicles, as we assume these arise per
gallon of petroleum product produced and should therefore not vary with either model year or
fuel economy (although they do vary with the year being evaluated).

We assume cars have a lifetime of 17 years and the average light-duty vehicle (which includes
both cars and light-trucks) has an average lifetime of 19 years, both of which come from Greene
& Leard (2023).198 For lifetime VMT, we again draw from the FHWA (2017). For cars, we
use the annual VMT reported for automobiles, cars, and station wagons. For the average light-
duty vehicle, we use the same annual VMT described above, which averages across all vehicle
types (excluding RVs, motorcycles, and unspecified vehicle types) and weights by the samples
of respondents who indicated that vehicle type.

over the vehicle’s lifetime, we account for rising social costs for pollutants with global dam-
ages. However, our social costs rise more slowly than our discount rate. Social costs for local
pollutants do not change over time, although damages from these pollutants rise as vehicles
decay. For most policies, we assume drivers maintain a given level of VMT regardless of what
vehicle they select. In these instances, we ignore externalities that arise per mile traveled. This
again assumes that per-mile externalities do not vary with vehicle type. When we incorporate

198To calculate the lifetime of an average new light-duty vehicle, we take the lifetimes of 17 for cars, 20 for
SUVs, and 25 for pickup trucks and calculate a weighted average using the 2020 production shares of 0.44 (all
cars), 0.42 (truck SUVs and minivans/vans), and 0.14 (pickups) from the EPA (2023b). This yields an average
lifetime that rounds to 19 years.
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the rebound in VMT due to improved vehicle fuel economy (which we include in our hybrid
and vehicle retirement MVPFs), we do account for accidents, congestion, and PM2.5 from tires
and brakes, as vehicles generate these externalities when they travel more miles. In these in-
stances, the per-mile externality does not di↵er between vehicle types even though per-gallon
pollution externalities do vary as a function of fuel economy. Accounting for increases in VMT
can therefore more than o↵set initial benefits from improved fuel economy, since both vehicles—
regardless of fuel economy—generate the same per-mile externalities.199 For policies where we
assume vehicles do not travel the average VMT reported by the FHWA (2017), we scale lifetime
damages by the fraction of the annual average VMT we think the vehicle travels because VMT
enters linearly into our calculations, assuming this fraction holds over the vehicle’s lifetime.

D Rebound

When a policy causes people to consume more or less energy, this can a↵ect the price of that
energy, leading to a “rebound” e↵ect. This e↵ect means that the standard “treatment vs
control” comparison does not identify the ultimate causal e↵ect of the policy, as the treatment
and control group are generally both experiencing the price changes. In this appendix section,
we discuss how we adjust estimates of the causal e↵ect of policy changes estimated in reduced-
form settings to account for rebound e↵ects by using external estimates of the supply and
demand curves of the market.

Let the total demand for energy be Q(p) and supply be given by S(p). Suppose we have
a policy (e.g., EV subsidy) that increases the demand for energy by dE. In equilibrium, we
require markets to clear so that

dE +Q0(p)dp = S 0(p)dp

or

dp =
�dE

S 0 �Q0

which means that the total change in energy consumption is given by

S 0(p)dp = dE
S 0(p)

S 0(p)�Q0(p)
(70)

= dE
1

1�Q0(p)/S 0(p)
(71)

= dE

✓
1� �✏D/✏S

1� ✏D/✏S

◆
(72)

where ✏D = (Q0(p)/Q(p))p and ✏S = (S 0(p)/S(p))p. The last line follows from the fact that
S(p) = Q(p) in equilibrium. The causal e↵ect estimated from reduced form approaches, dE, is

o↵set by a ’rebound’ e↵ect given by �✏D/✏S

1�✏D/✏S . Intuitively, if supply is perfectly elastic so that

199Phrased di↵erently, more fuel-e�cient vehicles do not impose smaller per-mile externalities than vehicles
with lower fuel economies, meaning an increase in driving will always generate damages from driving exter-
nalities. In our MVPFs, since local damages from gasoline consumption are a small component of the local
externality (especially when looking at new vehicles), we see that increases in accidents, congestion, and PM2.5

from increased VMT more than o↵set the initial benefits from decreased local air pollution that arise from
improved fuel economy.

160



✏S = 1, then there is no rebound e↵ect; conversely, if supply is perfectly inelastic, then any
policy that attempts to change energy consumption does not succeed in doing so: prices are
lowered so that energy consumption remains constant.

In our empirical implementation, we account for rebound e↵ects in the electricity generation
market. We use estimates of the supply and demand curves elasticities of 0.78 and -0.19,
respectively. This yields a rebound estimate of approximately 20%.

For the gasoline market, we assume that there is a flat global supply curve for gasoline so
that there is no rebound e↵ect on prices. 200

200While we do not incorporate rebound in the gasoline market, we note that many policies such as gas taxes
can a↵ect the cost of driving. We discuss in each policy context how we incorporate these e↵ects. But, we note
for gasoline taxes, any estimate of the causal e↵ect of the tax would incorporate both the channel from changes
in vehicle miles traveled and from changes in the cars people drive to have higher miles per gallon. In this sense,
estimates of the causal e↵ect of the gas tax on gasoline consumption already incorporate this rebound e↵ect.
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E Policy Appendices

E.1 Battery Electric Vehicles

E.1.1 State-level Battery Electric Vehicle Financial Incentives

Clinton & Steinberg (2019) analyze seven state-level direct vehicle rebates o↵ered between 2011
and 2014. The programs each varied in the value of the incentive, the time they were in e↵ect
and eligibility requirements. Using a fixed-e↵ect specification, they estimate the e↵ect of a
$1,000 increase in financial incentives to be a 7.8% increase in per capita BEV registrations.
We’ll translate this into an elasticity below.

Throughout this section, the “in-context” specification will mean the seven states (CA, HI,
IL, MA, PA, TN, TX) from 2011 to 2014, which is the time and geography analyzed in the
paper.

WTP The WTP for an expansion of BEV subsidies is the sum of the transfer (which we
normalize to 1) plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the elasticity (-2.931) times the societal willingness to pay for
one additional dollar of spending on the BEV, V/p. We estimate V/p separately by focusing on
the per-car externalities, V , and the relevant consumer price, p. To measure consumer prices,
the O�ce of Energy E�ciency and Renewable Energy (EERE) lists the manufacturer’s sug-
gested retail price (MSRP) for most BEV models. We compute a sales-weighted average using
data from Kelley Blue Book’s Electrified Light-Vehicle Sales Report for Q4 2021, which includes
estimates of 2020 sales of each BEV model. For models with multiple trims, EERE would often
report a range of MSRPs in which case we use the mean of the MSRP for that model. For
2020 we have an average MSRP of $54,025. The total subsidy is the sum of the average federal
and state-level subsidies in 2020, which we describe in more detail in the Fiscal Externalities
section, and is $647.25. To compute the elasticity, we take the semi-elasticity reported in the
paper 0.078, divide it by $1,000, and then multiply it by the MSRP net of subsidies for the
in-context specification, $36,248. This gives us an elasticity of -2.931.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $46,006, which net of
the average federal subsidy over 2011-2014 and the average subsidy among the fourteen states
leaves us with a net MSRP of $36,248.

Transfer We consider a $1 increase in the BEV subsidy with no pass-through rate.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the WTP for avoiding the
global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle and
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the WTP for facing the global pollutants from electricity generation needed to drive a battery
electric vehicle (BEV). We calculate the two WTPs as follows:

BEV Global Externalities To determine the damages from one electric vehicle, we need
to know how many kilowatt-hours (kWh) of electricity the average BEV uses each year and the
average vehicle miles traveled (VMT) driven. EERE reports the kWh of electricity needed for
each model of BEV to travel 100 miles. Combining this data with the sales data mentioned
above, we calculate a sales-weighted average of the kWh used by a BEV per mile. For 2020,
this average energy consumption is 0.293 kWh per mile, and for in-context is 0.326 kWh per
mile.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as “Automobile/Car/Station Wagon”, “Van
(Mini/Cargo/Passenger)”, “SUV (Santa Fe, Tahoe, Jeep, etc.), “Pickup Truck”, and “Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is. Then, the VMT is multiplied by 0.6154 following Zhao et al. (2023)’s
analysis finding that BEVs accumulate fewer annual miles than ICE vehicles: 7,165 versus
11,642.

Throughout our analysis, we assume the counterfactual ICE vehicles and BEVs have the
same VMT, although our primary results are robust to reasonable variations in this assump-
tion. This is because we believe the di↵erence in VMT found in Zhao et al. is due to selection
in the types of drivers that purchase BEVs independent of vehicle type. 201 We assume a
17-year lifespan for both ICE vehicles and BEVs, so we use the VMT numbers corresponding
to a car’s lifespan within that range. The survey reports an average VMT of 12,245 miles
for the first year with the remaining values of VMT ranging between 5,885 (in the last year)
and 13,078 (in the fifth year). For in-context, we impute age-state-level VMT data using the
NHTS VMT by household state and vehicle type. We calculate a percent di↵erence between
the sample-weighted average VMT across all ages and each age’s VMT. Then, we assume this
percent di↵erence holds within states. Thus, we use the EV registration-weighted average of
the nine sample states’ imputed VMTs for the in-context specification.

Now that we can calculate the energy consumption for a BEV in each year of its lifetime,
we estimate the global damages from electricity consumption from the grid using information
from AVERT and forecasts of the cleanliness of the grid from Jenkins & Mayfield (2023). Since
the VMT changes for each year of the car’s lifetime, the global damages each year change as
well. For exposition, the first year’s energy consumption will be 2425.525 kWh in 2020 and
2573.102 in-context which leads to $347.623 and $218.546 respectively, of global damages from
grid pollution. See a more detailed description of the grid externalities calculations in Appendix
C.1. We then estimate the global damages for each year of the vehicle’s lifetime, which totals
$3183.512 in global damages in 2020 and $2769.536 in context. Normalized by the net MSRP,
we have $0.060 for 2020 and $0.076 for in-context.

Finally, we take this amount and multiply it by the elasticity of -2.931 and we subtract
out the portion of the benefits that will accrue to the US government via increased GDP from

201It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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avoiding carbon emissions, which is 1.9% of the total amount (see Section 4). Written out this
is 0.060 ·�2.931 · (1� 0.15 · 0.2554 · 0.5). Thus, our final values for the damages from using a
BEV are -0.171 (2020) and -0.212 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the BEVs. We need the average fuel economy to obtain the final gas consumption in each
year of the ICE vehicle’s life. Holland et al. (2016) report in their appendix a substitute gas
vehicle for each popular BEV in 2014. Most of these are the ICE versions of the BEV (i.e.,
the gas-powered Ford Focus as the counterfactual for the BEV Ford Focus), but some are not.
They test the reasonableness of their choices based on market research data from MaritzCX.
Using the sales data in 2014 for the BEVs for which they find counterfactuals, we compute
an average counterfactual MPG for 2014, which is 37.16 miles per gallon. This is higher than
the average new car fuel economy in 2014 of 27.63 mpg. We then extrapolate to an average
counterfactual MPG for other years by calculating the ratio of the counterfactual MPG to the
car fleet’s average MPG in 2014 and assuming that the ratio of 1.34 holds for other years. This
gives us a counterfactual MPG of 41.23 in 2020 and 39.37 in context. We also explore the
robustness of our results to assuming BEVs displace an average fleet light duty vehicle, which
slightly raises the MVPF to 1.982.

In the first year of the counterfactual ICE vehicle’s life, we estimate it consumed 326.599
gallons of gas in 2020 and 365.79 in context. Now with the gas consumed by an ICE vehi-
cle in each year of its life, we estimate the total damages from an ICE with the estimated
pollutants as described in Appendix C.3. Again, we take this amount and normalize it by
the net MSRP of a BEV to get 0.099 for 2020 and 0.130 in-context, and multiply it by the
elasticity to get 0.291 and 0.368 and we subtract out the portion of the benefits that will ac-
crue to the US government via increased GDP from avoiding carbon emissions, which is 1.9%
of the total amount (see Section 4). Thus, a $1 increase in the subsidy for a BEV leads to a
reduction in damages from driving the counterfactual ICE of 0.285 in 2020 and 0.361 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in electric vehicles. Battery production is a unique source of emissions from
BEVs compared to ICE vehicles. Winjobi et al. (2022) note that “batteries in electric vehicles
can account for one-third of their production greenhouse gas (GHG) emissions” and find in
their analysis of di↵erent battery chemistries that lithium nickel manganese cobalt oxide bat-
teries with equal proportions of nickel, manganese, and cobalt (NMC11) have life-cycle GHG
emissions of 59.5 kg CO2-eq/kWh. Using the average battery capacity for 2020 (73.004) and
in-context (39.777), we have 4343.744 for 2020 and 2366.736 in-context. After converting the kg
of emissions to tons, multiplying by the SCC, and normalizing by the MSRP, we have 0.016 for
2020 and 0.011 in context. Multiplying by the elasticity and pass-through rate and subtracting
out the portion of the benefits that will accrue to the US government via increased GDP from
avoiding carbon emissions, we have 0.045 for 2020 and 0.030 for in-context.

The sum of the reduction in ICE emissions, increase in grid-related emissions, and upstream
battery production emissions gives our final externality measure of 0.069 (2020) and 0.119 (in-
context) for the global environmental externality for a $1 mechanical increase in subsidies to
BEVs.
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Local Externalities Local externalities are estimated in nearly the same way as global ex-
ternalities. We use the same energy and gas consumption values. The di↵erence is the marginal
damage per kWh of electricity or gallon of gasoline. We describe the estimation of these local
damages in Appendices C.1 and C.3. We calculate -0.009 in 2020 and -0.019 in-context in local
damages from BEVs and 0.009 in 2020 and 0.011 in-context from the counterfactual ICE, which
di↵erenced out gives 0.000 and -0.008, respectively. After multiplying by the elasticity, we have
0.000 and -0.023.

Rebound The previous analysis assumes that the increased consumption of BEVs does
not a↵ect grid-wide electricity prices. We now consider some general equilibrium e↵ects where
the increased use of BEVs increases the price of electricity and thus decreases electricity con-
sumption. We assume this e↵ect does not lead to a secondary rebound in using ICE vehicles
because while we allow for local production of electricity with upward-sloping supply curves, we
assume a flat global supply curve for gasoline so that there are few if any rebound e↵ects in the
gasoline market. The rebound e↵ect is calculated as 1

1�"D/"S
where "D is the demand elasticity

for electricity, which is -0.19 and comes from DOI (2021) and "S is the supply elasticity for
electricity, which is 0.78 (see Appendix C.1.4 for calculation). With this rebound e↵ect of about
20% multiplied by the previously calculated global and local damages from electricity consump-
tion for BEVs, we now have a decrease in damages of 0.038 in 2020 and 0.052 in-context from
less electricity consumption.

Learning-by-Doing Our model of learning-by-doing is described in Appendix B. Here
we describe any necessary preliminary calculations as well as the data sources for the inputs of
the model. There are nine inputs into the model: the demand elasticity for BEVs, the discount
rate, the learning rate, the fraction of a BEV’s price that is from non-battery components (we’ll
refer to this as the fixed cost ratio), the marginal sales in a given year, the cumulative sales
up until the year of interest, the net MSRP, the environmental damage per EV, and the social
cost of carbon (SCC).

The demand elasticity for this policy of -2.931 is calculated as described above. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating
to future SCC values is described in Section 4. The net MSRP is as described at the top of the
WTP section. The last input is the SCC, which we use a baseline value of 193 for 2020 and
allow to vary over time following projections of a rising SCC from the Environmental Protection
Agency’s recent guidance regarding the social cost of carbon at a 2% discount rate.

This leaves the fixed cost ratio, marginal, and cumulative sales to describe. Marginal and
cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and Trancik
(2021). They report a representative series of the price of all types of lithium-ion cells and one
for the market size of all types of lithium-ion cells, measured in energy capacity. However, the
price data only goes until 2018 and the sales data until 2016, so we append price data from the
Department of Energy and sales data from the IEA. For 2020, the marginal sales are 167700
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MWh of batteries and the cumulative sales are 917708 starting from 1991. For in-context,
the average marginal sales are 29,680 and the average cumulative sales are 147359. The price
per kWh in 2020 is $181.978 and over 2011-14 on average is $248.777. To calculate the fixed
cost ratio, we take the price per kWh and multiply it by the sales-weighted average battery
capacity for EVs in 2020, 73.004 kWh (battery capacity for each model comes from Edmunds),
or 2011-14, 39.777 kWh. We then divide this by the MSRP ($54,025 or $46,006) to get the
proportion of the cost due to the battery of 0.246 for 2020 and 0.187 for in-context. One minus
that proportion gives us our fixed cost ratio of 0.754 for 2020 and 0.813 for in-context. Recall
that for our learning-by-doing model we only think the learning is a↵ecting the battery price
and not the price of other parts of the vehicle, so any price and environmental benefits will be
a result of only those battery prices coming down. Following the steps outlined in Appendix
B, we obtain a dynamic environmental component for 2020 (in-context) of 0.064 (-0.233) and
a dynamic price component of 0.564 (0.403).

Profits Lastly for WTP, we estimate the gasoline producers’ and utilities’ WTP for the
subsidy. Since the gasoline market has higher markups than the average market and electricity
markets are heavily regulated to have fixed levels of markups, we believe this is an important
component to consider. Using the previously estimated increase in electricity consumption and
decrease in gas consumption, we calculate the producers’ WTP as the markup multiplied by the
change in electricity or gas, normalized by the net MSRP, and then multiplied by the elasticity.
For each year of the car’s lifetime, the annual profits will be discounted. For gasoline, this is
2,857.1/3,199.9 gallons of gasoline multiplied by 0.613/0.933 markup (discounted each year),
normalized by the net MSRP, multiplied by the elasticity, and finally we subtract out 21% of
the surplus due to the e↵ective corporate tax rate to get 0.066/0.142. For utilities, we have
34,476/36,574 kWh of electricity multiplied by 0.011/0.022 markup, normalized, and multiplied
by the same elasticity to get 0.015/0.044.

With the various components, we can now calculate the total WTP of 1.684 for 2020 and 1.221
for in-context.

Cost The cost of $1 mechanical increase in BEV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits tax collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs In 2020 and in context there are some existing federal and state
subsidies for BEVs that an additional dollar of spending will spur further behavioral e↵ects
that will increase the spending from the preexisting programs. Federally in 2020 most BEVs no
longer qualified for the $7,500 subsidy from the Qualified Plug-In Electric Drive Motor Vehicle
Credit. Only eight models qualified and some of those for less than the full amount. EERE
reports the subsidy each model qualified for and when it stopped qualifying for the maximum
amount and subsequent smaller amounts. Similar to how we estimate the sales-weighted aver-
age for other parameters, we estimate a sales-weighted average federal subsidy of $42.98 in 2020
and $7107.55 in-context. Normalizing that value by the net MSRP gives us $0.001 in 2020 and
$0.196 in context. Finally, multiplying by the elasticity gives us the federal fiscal externality of
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0.002 for 2020 and 0.554 for in-context.

For state subsidies, we use the Alternative Fuels Data Center’s (AFDC) database on in-
centives and laws related to alternative fuels and advanced vehicles. Nine states in 2020 have
subsidies for BEVs, with varying levels of subsidy size, MSRP eligibility rules, and income
eligibility rules. For example in Oregon there was a $7,500 subsidy that applied if the battery
was greater than 10 kWh, the MSRP was less than $50,000, and the income for a household
of one was below $54,360. If subsidies di↵er by driver’s income, we scale the subsidy based
on the approximate proportion of EV drivers within that income constraint. Muehlegger &
Rapson (2019) report the proportion of EV drivers within income categories and find that 14%
have household incomes between 0 and $49,000 and 30% have incomes between 50 and $99,000.
This implies (assuming a uniform distribution of EV purchasers within each bucket) that 16.7%
of Oregon’s EV purchasers were eligible for the subsidy. In 2020, only 63% of BEVs had an
MSRP of less than $50,000. Thus, we can estimate that the percent of EV purchasers who
received the subsidy (assuming independence) is 0.63 · 0.167 = 0.1056. The average subsidy
received in Oregon was $792.33. We repeat these steps for the other eight states and then we
use the AFDC’s data on how many EV registrations occur in each state to compute a final
EV registration-weighted average state subsidy of $604.27. This value normalized by the net
MSRP and multiplied by the elasticity gives us the state fiscal externality of 0.033.

Since the in-context MVPF is looking at a specific state’s subsidy, we take the subsidy
amount to be $2,650.3 as reported in the text of Clinton and Steinberg (2019). When normal-
ized and multiplied by the elasticity, this gives us a state fiscal externality of 0.207.

Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state and
federal gas tax rates as described in Appendix Section E.5. The FE is the elasticity multiplied
by the tax rate of 0.465/0.398 multiplied by the decrease in gas consumption from ICE vehicles
of 2,857.1/3,199.9 and normalized by the net MSRP to get 0.063/0.082.

Profits Tax FE Similarly to gasoline taxes, we have an average combined revenue rate of
0.006/0.012 that accounts for profits to publicly-owned utilities and corporate taxes on privately
owned utilities as described in Appendix C.1.3. The FE is calculated in the same way as the
gas tax FE to get 0.008/0.024.

Climate FE Finally, the climate fiscal externality comes from the increased GDP due to
decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a) based
50% on GDP and estimates that 15% of that avoided GDP loss would flow to the US. Since the
average tax rate in the US is 25.54%, we estimate the climate FE as 0.15 ·0.2554 ·0.5 = 1.9% of
the static global environmental externality and the dynamic global environmental externality
that results from learning by doing. Taking those two pieces and multiplying their sum by 1.9%
gives us -0.005/0.000.

Thus, our final cost is 1.104/1.857, which gives us our MVPFs of 1.525 and 0.657.
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E.1.2 Qualified Plug-In Electric Drive Motor Vehicle Credit

Li et al. (2017) studied the Qualified Plug-In Electric Drive Motor Vehicle Credit (PEDVC).
This is a credit for electric vehicles purchased beginning in 2009. Li et al. (2017) simulate
the e↵ect of the PEDVC on battery electric vehicle (BEV) sales from 2011-13 using a model
of indirect network e↵ects between BEV sales and the availability of public charging stations.
They find that 40.4% of the total BEV sales during the three years were a result of the subsidy
program. We’ll translate this into an elasticity below.

Throughout this section, the “in-context” specification will mean the US from 2011 to 2013,
which is the time and geography analyzed in the paper.

WTP The WTP for an expansion of BEV subsidies is the sum of the transfer (which we
normalize to 1 plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the elasticity (-2.611) times the societal willingness to pay for
one additional dollar of spending on the BEV, V/p. We estimate V/p separately by focusing
on the per-car externalities, V , and the relevant consumer price, p. To measure consumer
prices, the O�ce of Energy E�ciency and Renewable Energy (EERE) lists the manufacturer’s
suggested retail price (MSRP) for most BEV models. We compute a sales-weighted average
using data from Kelley Blue Book’s Electrified Light-Vehicle Sales Report for Q4 2021, which
includes estimates of 2020 sales of each BEV model. For models with multiple trims, EERE
would often report a range of MSRPs in which case we use the mean of the MSRP for that
model. For 2020 we have an average MSRP of $54,025. The total subsidy is the sum of the
average federal and state-level subsidies in 2020, which we describe in more detail in the Fiscal
Externalities section, and is $647.25.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $47,436, which net of the
average state subsidy over 2011-2013 leaves us with a net MSRP of $39,269.

We use in-context MSRPs and subsidy amounts to compute the elasticity. We take the BEV
sales increase reported in the paper, 0.404, and divide it by the percent change in price of a
BEV that corresponds to the subsidy, which is $6592.25 (the average subsidy from the PEDVC
as reported in the text of the paper) divided by the average net MSRP over 2011-13, $42,565.
This gives us 0.404/�0.144 and our final elasticity of -2.611.

Transfer We consider a $1 increase in the BEV subsidy with no pass-through rate.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the WTP for avoiding the
global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle and
the WTP for facing the global pollutants from electricity generation needed to drive a battery
electric vehicle (BEV). We calculate the two WTPs as follows: BEV Global Externalities
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To determine the damages from one electric vehicle, we need to know how many kilowatt-hours
(kWh) of electricity the average BEV uses each year and the average vehicle miles traveled
(VMT). EERE reports the kWh of electricity needed for each model of BEV to travel 100
miles. Combining this data with the sales data mentioned above, we calculate a sales-weighted
average of the kWh used by a BEV per mile. For 2020, this average energy consumption is
0.293 kWh per mile, and for in-context is 0.331 kWh per mile.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as ”Automobile/Car/Station Wagon”, ”Van
(Mini/Cargo/Passenger)”, ”SUV (Santa Fe, Tahoe, Jeep, etc.), ”Pickup Truck”, and ”Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is. Then, the VMT is multiplied by 0.6154 following Zhao et al. (2023)’s
analysis finding that BEVs accumulate fewer annual miles than ICE vehicles: 7,165 versus
11,642.

Throughout our analysis, we assume the counterfactual ICE vehicles and BEVs have the
same VMT, although our primary results are robust to reasonable variations in this assump-
tion. Then, the VMT is multiplied by 0.6154 following Zhao et al. (2023)’s analysis finding that
BEVs accumulate fewer annual miles than ICE vehicles: 7,165 versus 11,642. 202 We assume a
17-year lifespan for both ICE vehicles and BEVs, so we use the VMT numbers corresponding to
each year of a car’s lifespan within that range. The survey reports an average VMT of 12,245
miles for the first year with the remaining values of VMT ranging between 5,885 (in the last
year) and 13,078 (in the fifth year). This input does not change between in-context and 2020
because the NHTS is only run every 5-8 years.

Now that we can calculate the energy consumption for a BEV in each year of its lifetime,
we estimate the damages from electricity consumption from the grid using information from
AVERT and forecasts of the cleanliness of the grid from Jenkins & Mayfield (2023). Since the
VMT changes for each year of the car’s lifetime, the damages each year change as well. For
exposition, the first year’s energy consumption will be 2425.525 kWh in 2020 and 2747.203
in-context which leads to 347.623 and 303.581 respectively, of damages from grid pollution.
See a more detailed description of the grid externalities calculations in Appendix C.1. We then
estimate the damages for each year of the vehicle’s lifetime, which totals 3183.512 in damages
in 2020 and 3993.640 in context. Normalized by the net MSRP, we have 0.060 for 2020 and
0.102 for in-context.

Finally, we take this amount and multiply it by the elasticity of -2.611 and we subtract
out the portion of the benefits that will accrue to the US government via increased GDP from
avoiding carbon emissions, which is 1.9% of the total amount (see Section 4). Written out this
is 0.060 ·�2.611 · (1� 0.15 · 0.3). Thus, our final values for the damages from using a BEV are
-0.153 (2020) and -0.209 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the BEVs. We need the average fuel economy to obtain the final gas consumption in each
year of the ICE vehicle’s life. Holland et al. (2016) report in their appendix a substitute gas

202It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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vehicle for each popular BEV in 2014. Most of these are the ICE versions of the BEV (i.e.,
the gas-powered Ford Focus as the counterfactual for the BEV Ford Focus), but some are not.
They test the reasonableness of their choices based on market research data from MaritzCX.
Using the sales data in 2014 for the BEVs for which they find counterfactuals, we compute
an average counterfactual MPG for 2014, which is 37.16 miles per gallon. This is higher than
the average new car fuel economy in 2014 of 27.63 mpg. We then extrapolate to an average
counterfactual MPG for other years by calculating the ratio of the counterfactual MPG to the
car fleet’s average MPG in 2014 and assuming that the ratio of 1.34 holds for other years. This
gives us a counterfactual MPG of 41.233 in 2020 and 36.556 in context. We also explore the
robustness of our results to assuming EVs displace an average fleet light duty vehicle, which
slightly raises the MVPF to 1.700.

In the first year of the counterfactual ICE vehicle’s life, we estimate it consumed 326.599
gallons of gas in 2020 and 368.71 in context. Now with the gas consumed by an ICE vehicle in
each year of its life, we estimate the total damages from an ICE with the estimated pollutants
as described in Appendix C.3. Again, we take this amount and normalize it by the net MSRP
of a BEV to get 0.099 for 2020 and 0.118 in-context, and multiply it by the elasticity to get
0.259 and 0.309 and we subtract out the portion of the benefits that will accrue to the US gov-
ernment via increased GDP from avoiding carbon emissions, which is 1.9% of the total amount
(see Section 4). Thus, $1 of spending on a BEV generates $0.099 of environmental savings from
reduced ICE emissions. Multiplying by the elasticity, this suggests that a $1 increase in the
subsidy for a BEV leads to a reduction in damages from driving the counterfactual ICE is 0.254
in 2020 and 0.303 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in electric vehicles. Winjobi et al. (2022) note that “batteries in electric vehicles
can account for one-third of their production greenhouse gas (GHG) emissions” and find in
their analysis of di↵erent battery chemistries that lithium nickel manganese cobalt oxide bat-
teries with equal proportions of nickel, manganese, and cobalt (NMC11) have life-cycle GHG
emissions of 59.5 kg CO2-eq/kWh. Using the average battery capacity for 2020 (73.004) and
in-context (40.008), we have 4343.744 for 2020 and 2380.470 in-context. After converting the kg
of emissions to tons, multiplying by the SCC, and normalizing by the MSRP, we have 0.016 for
2020 and 0.010 in context. Multiplying by the elasticity and pass-through rate and subtracting
out the portion of the benefits that will accrue to the US government via increased GDP from
avoiding carbon emissions, we have 0.040 for 2020 and 0.025 for in-context.

The sum of the reduction in ICE emissions, increase in grid-related emissions, and upstream
battery production emissions gives our final externality measure of 0.061 (2020) and 0.068 (in-
context) for the global environmental externality for a $1 mechanical increase in subsidies to
BEVs.

Local Externalities Local externalities are estimated in nearly the same way as global
externalities. We use the same energy and gas consumption values. The di↵erence is the
marginal damage per kWh of electricity or gallon of gasoline. We describe the estimation of
these local damages in Appendices C.1 and C.3. We calculate local damages from increased
grid usage from BEVs of -0.009 in 2020 and -0.029 in context. We calculate savings from
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reduced gasoline consumption of 0.009 in 2020 and 0.010 in context from the counterfactual
ICE. Taking the di↵erence between the grid usage and gas consumption yields total benefits
of 0.000 and -0.018, respectively. After multiplying by the price elasticity, it suggests $1 of
mechanical spending on the subsidy delivers local environmental benefits of $0.000 in 2020 and
$-0.034in context.

Rebound The previous analysis assumes that the increased consumption of BEVs does
not a↵ect grid-wide electricity prices. We now consider some general equilibrium e↵ects where
the increased use of BEVs increases the price of electricity and thus decreases electricity con-
sumption. We assume this e↵ect does not lead to a secondary rebound in using ICE vehicles
because while we allow for local production of electricity with upward-sloping supply curves, we
assume a flat global supply curve for gasoline so that there are few if any rebound e↵ects in the
gasoline market. The rebound e↵ect is calculated as 1

1�"D/"S
where "D is the demand elasticity

for electricity, which is -0.19 and comes from DOI (2021) and "S is the supply elasticity for
electricity, which is 0.78 (see Appendix C.1.4 for calculation). With this rebound e↵ect of about
20% multiplied by the previously calculated global and local damages from electricity consump-
tion for BEVs, we now have a decrease in damages of 0.034 in 2020 and 0.053 in-context from
less electricity consumption.

Learning-by-Doing Our model of learning by doing is described in Appendix B. Here
we describe any necessary preliminary calculations as well as the data sources for the inputs of
the model. There are nine inputs into the model: the demand elasticity for BEVs, the discount
rate, the learning rate, the fraction of a BEV’s price that is from non-battery components (we’ll
refer to this as the fixed cost ratio), the marginal sales in a given year, the cumulative sales
up until the year of interest, the net MSRP, the environmental damage per EV, and the social
cost of carbon (SCC).

The demand elasticity for this policy of -2.611 is calculated as described above. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating
to future SCC values is described in Section 3.2. The net MSRP is as described at the top of
the WTP section. The last input is the SCC, which we use a baseline value of 193 for 2020 and
allow to vary over time following projections of a rising SCC from the Environmental Protection
Agency’s recent guidance regarding the social cost of carbon at a 2% discount rate.

This leaves the fixed cost ratio, marginal, and cumulative sales to describe. Marginal and
cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and Trancik
(2021). They report a representative series of the price of all types of lithium-ion cells and one
for the market size of all types of lithium-ion cells, measured in energy capacity. However, the
price data only goes until 2018 and the sales data until 2016, so we append price data from the
Department of Energy and sales data from the IEA. For 2020, the marginal sales are 167700
MWh of batteries and the cumulative sales are 917708 starting from 1991. For in-context,
the average marginal sales are 29,680 and the average cumulative sales are 147359. The price
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per kWh in 2020 is $181.978 and over 2011-13 on average is $259.153. To calculate the fixed
cost ratio, we take the price per kWh and multiply it by the sales-weighted average battery
capacity for EVs in 2020, 73.004 kWh (battery capacity for each model comes from Edmunds),
or 2011-13, 40.008 kWh. We then divide this by the MSRP ($54,025 or $47,436) to get the
proportion of the cost due to the battery of 0.246 for 2020 and 0.190 for in-context. One minus
that proportion gives us our fixed cost ratio of 0.754 for 2020 and 0.810 for in-context. Recall
that for our learning-by-doing model we only think the learning is a↵ecting the battery price
and not the price of other parts of the vehicle, so any price and environmental benefits will be
a result of only those battery prices coming down. Following the steps outlined in Appendix
B, we obtain a dynamic environmental component for 2020 (in-context) of 0.049 (0.035) and a
dynamic price component of 0.482 (0.356).

Profits Lastly for WTP, we estimate the gasoline producers’ and utilities’ WTP for the
subsidy. Since the gasoline market has higher markups than the average market and electricity
markets are heavily regulated to have fixed levels of markups, we believe this is an important
component to consider. Using the previously estimated increase in electricity consumption and
decrease in gas consumption, we calculate the producers’ WTP as the markup multiplied by the
change in electricity or gas, normalized by the net MSRP, and then multiplied by the elasticity.
For each year of the car’s lifetime, the annual profits will be discounted. For gasoline, this is
2,857.1/3,225.4 gallons of gasoline multiplied by 0.613/0.921 markup (discounted each year),
normalized by the net MSRP, multiplied by the elasticity, and finally we subtract out 21% of
the surplus due to the e↵ective corporate tax rate to get 0.059/0.128. For utilities, we have
34,476/39,049 kWh of electricity multiplied by 0.011/0.010 markup, normalized, and multiplied
by the same elasticity to get 0.013/0.018.

With the various components, we can now calculate the total WTP of 1.580 for 2020 and 1.368
for in-context.

Cost The cost of $1 mechanical increase in BEV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits tax collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs In 2020 and in context there are some existing federal and state
subsidies for BEVs that an additional dollar of spending will spur further behavioral e↵ects
that will increase the spending from the preexisting programs. Federally in 2020 most BEVs no
longer qualified for the $7,500 subsidy from the Qualified Plug-In Electric Drive Motor Vehicle
Credit. Only eight models qualified and some of those for less than the full amount. EERE
reports the subsidy each model qualified for and when it stopped qualifying for the maximum
amount and subsequent smaller amounts. Similar to how we estimate the sales-weighted av-
erage for other parameters, we estimate a sales-weighted average federal subsidy of $42.9789
in 2020. For in-context, we use the average federal subsidy reported by the paper, which is
$6,592.2 in-context. Normalizing that value by the net MSRP gives us $0.001 in 2020 and
$0.168 in context. Finally, multiplying by the elasticity gives us the federal fiscal externality of
0.002 for 2020 and 0.438 for in-context.
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For state subsidies, we use the Alternative Fuels Data Center’s (AFDC) database on in-
centives and laws related to alternative fuels and advanced vehicles. Nine states in 2020 have
subsidies for BEVs, with varying levels of subsidy size, MSRP eligibility rules, and income
eligibility rules. For example in Oregon there was a $7,500 subsidy that applied if the battery
was greater than 10 kWh, the MSRP was less than $50,000, and the income for a household
of one was below $54,360. If subsidies di↵er by driver’s income, we scale the subsidy based
on the approximate proportion of EV drivers within that income constraint. Muehlegger &
Rapson (2019) report the proportion of EV drivers within income categories and find that 14%
have household incomes between 0 and $49,000 and 30% have incomes between 50 and $99,000.
This implies (assuming a uniform distribution of EV purchasers within each bucket) that 16.7%
of Oregon’s EV purchasers were eligible for the subsidy. In 2020, only 63% of BEVs had an
MSRP of less than $50,000. Thus, we can estimate that the percent of EV purchasers who
received the subsidy (assuming independence) is 0.63 · 0.167 = 0.1056. The average subsidy
received in Oregon was $792.33. We repeat these steps for the other eight states and then we
use the AFDC’s data on how many EV registrations occur in each state to compute a final
EV registration-weighted average state subsidy of $42.9789. This value normalized by the net
MSRP and multiplied by the elasticity gives us the state fiscal externality of 0.002.

For the in-context MVPF, we take the subsidy amount reported in Table 1 of Li et al.
(2017), which is $1,575. When normalized and multiplied by the elasticity, this gives us a state
fiscal externality of 0.105.

Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state and
federal gas tax rates as described in Appendix Section E.5. The FE is the elasticity multiplied
by the tax rate of 0.465/0.398 multiplied by the decrease in gas consumption from ICE vehicles
of 2,857.1/3,225.4 and normalized by the net MSRP to get 0.056/0.074.

Profits Tax FE Similarly to gasoline taxes, we have an average combined revenue rate of
0.006/0.005 that accounts for profits to publicly-owned utilities and corporate taxes on privately
owned utilities as described in Appendix C.1.3. The FE is calculated in the same way as the
gas tax FE to get 0.007/0.010.

Climate FE Finally, the climate fiscal externality comes from the increased GDP due to
decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a) based
on 50% GDP and estimates that 15% of that avoided GDP loss would flow to the US. Since the
average tax rate in the US is 25.54%, we estimate the climate FE as 0.15 ·0.2554 ·0.5 = 1.9% of
the static global environmental externality and the dynamic global environmental externality
that results from learning by doing. Taking those two pieces and multiplying their sum by 1.9%
gives us -0.004/-0.004.

Thus, our final cost is 1.093/1.638, which gives us our MVPFs of 1.447 and 0.836.
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E.1.3 Enhanced Fleet Modernization Program

Muehlegger and Rapson (2022) study the Enhanced Fleet Modernization Program. This is a
voluntary vehicle scrappage program that promotes the purchase of new battery electric ve-
hicles (BEVs) for California residents who have low incomes. The program was evaluated by
exploiting exogenous variation in large EV subsidies within “disadvantaged” zip codes across
pilot and control regions. Results suggested a consumer price elasticity of EV demand of -2.1
and an average subsidy pass-through rate of 85 percent.

Throughout this section, the “in-context” specification will mean California from 2015 to
2018, which is the time and geography analyzed in the paper.

WTP The WTP for an expansion of BEV subsidies is the sum of the transfer (which we
normalize to 1) plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the product of the elasticity (-2.1) times the pass-thru rate of
subsidies to prices, times the societal willingness to pay for one additional dollar of spending on
the BEV, V/p. We estimate V/p separately by focusing on the per-car externalities, V , and the
relevant consumer price, p. To measure consumer prices, the O�ce of Energy E�ciency and
Renewable Energy (EERE) lists the manufacturer’s suggested retail price (MSRP) for most
BEV models. We compute a sales-weighted average using data from Kelley Blue Book’s Elec-
trified Light-Vehicle Sales Report for Q4 2021, which includes estimates of 2020 sales of each
BEV model. For models with multiple trims, EERE would often report a range of MSRPs
in which case we use the mean of the MSRP for that model. For 2020 we have an average
MSRP of $54,025. The total subsidy is the sum of the average federal and state-level subsi-
dies in 2020, which we describe in more detail in the Fiscal Externalities section, and is $647.25.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $61,678, which net of the
average federal subsidy over 2015-2018 and the subsidy specific to this EFMP program leaves
us with a net MSRP of $45,656.

Transfer We consider a $1 increase in the BEV subsidy, where 85% flows to the consumers
and 15% to the dealers as shown in Table 4 of Muehlegger and Rapson (2022) implies.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the WTP for avoiding the
global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle and
the WTP for facing the global pollutants from electricity generation needed to drive a battery
electric vehicle (BEV). We calculate the two WTPs as follows: BEV Global Externalities
To determine the damages from one electric vehicle, we need to know how many kilowatt-hours
(kWh) of electricity the average BEV uses each year and the average vehicle miles traveled
(VMT) driven. EERE reports the kWh of electricity needed for each model of BEV to travel 100
miles. Combining this data with the sales data mentioned above, we calculate a sales-weighted
average of the kWh used by a BEV per mile. For 2020, this average energy consumption is
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0.293 kWh per mile, and for in-context is 0.314 kWh per mile.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as ”Automobile/Car/Station Wagon”, ”Van
(Mini/Cargo/Passenger)”, ”SUV (Santa Fe, Tahoe, Jeep, etc.), ”Pickup Truck”, and ”Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is. Then, the VMT is multiplied by 0.6154 following Zhao et al. (2023)’s
analysis finding that BEVs accumulate fewer annual miles than ICE vehicles: 7,165 versus
11,642.

Throughout our analysis, we assume the counterfactual ICE vehicles and BEVs have the
same VMT, although our primary results are robust to reasonable variations in this assump-
tion. Then, the VMT is multiplied by 0.6154 following Zhao et al. (2023)’s analysis finding that
BEVs accumulate fewer annual miles than ICE vehicles: 7,165 versus 11,642. 203 We assume a
17-year lifespan for both ICE vehicles and BEVs, so we use the VMT numbers corresponding to
each year of a car’s lifespan within that range. The survey reports an average VMT of 12,245
miles for the first year with the remaining values of VMT ranging between 5,885 (in the last
year) and 13,078 (in the fifth year). For in-context, we impute age-state-level VMT data using
the NHTS VMT by household state and vehicle type. We calculate a percent di↵erence between
the sample-weighted average VMT across all ages and each age’s VMT. Then, we assume this
percent di↵erence holds within states. Thus, we use the California-specific imputed VMT for
the in-context specification.

Now that we can calculate the energy consumption for a BEV in each year of its lifetime,
we estimate the damages from electricity consumption from the grid using information from
AVERT and forecasts of the cleanliness of the grid from Jenkins & Mayfield (2023). Since the
VMT changes for each year of the car’s lifetime, the damages each year change as well. For
exposition, the first year’s energy consumption will be 2425.525 kWh in 2020 and 2424.229
in-context which leads to 347.623 and 200.897 respectively, of damages from grid pollution.
See a more detailed description of the grid externalities calculations in Appendix C.1. We then
estimate the damages for each year of the vehicle’s lifetime, which totals 3183.512 in damages
in 2020 and 2136.125 in context. Normalized by the net MSRP, we have 0.060 for 2020 and
0.047 for in-context.

Finally, we take this amount and multiply it by the elasticity of -2.1 and the pass-through
rate of 0.85 and we subtract out the portion of the benefits that will accrue to the US government
via increased GDP from avoiding carbon emissions, which is 1.9% of the total amount (see
Section 4). Written out for 2020 this is 0.060 ·�2.1 · 0.85 · (1� 0.15 · 0.2554 · 0.5). Thus, our
final values for the damages from using a BEV are -0.104 (2020) and -0.082 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the BEVs. We need the average fuel economy to obtain the final gas consumption in each
year of the ICE vehicle’s life. Holland et al. (2016) report in their appendix a substitute gas
vehicle for each popular BEV in 2014. Most of these are the ICE versions of the BEV (i.e.,
the gas-powered Ford Focus as the counterfactual for the BEV Ford Focus), but some are not.

203It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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They test the reasonableness of their choices based on market research data from MaritzCX.
Using the sales data in 2014 for the BEVs for which they find counterfactuals, we compute
an average counterfactual MPG for 2014, which is 37.16 miles per gallon. This is higher than
the average new car fuel economy in 2014 of 27.63 mpg. We then extrapolate to an average
counterfactual MPG for other years by calculating the ratio of the counterfactual MPG to the
car fleet’s average MPG in 2014 and assuming that the ratio of 1.34 holds for other years. This
gives us a counterfactual MPG of 41.23 in 2020 and 39.37 in context. We also explore the
robustness of our results to assuming EVs displace an average fleet light duty vehicle, which
slightly raises the MVPF to 1.450.

In the first year of the counterfactual ICE vehicle’s life, we estimate it consumed 326.599
gallons of gas in 2020 and 342.247 in context. Now with the gas consumed by an ICE ve-
hicle in each year of its life, we estimate the total damages from an ICE with the estimated
pollutants as described in Appendix C.3. Again, we take this amount and normalize it by
the net MSRP of a BEV to get 0.099 for 2020 and 0.109 in-context, and multiply it by the
elasticity and the pass-through rate to get 0.177 and 0.195 and we subtract out the portion of
the benefits that will accrue to the US government via increased GDP from avoiding carbon
emissions, which is 1.9% of the total amount (see Appendix 4). Thus, $1 of spending on an EV
generates $0.099 of environmental savings from reduced ICE emissions. Multiplying by the elas-
ticity and pass-through rate, this suggests that a $1 increase in the subsidy for an EV leads to a
reduction in damages from driving the counterfactual ICE of 0.174 in 2020 and 0.191 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in electric vehicles. Winjobi et al. (2022) note that “batteries in electric vehicles
can account for one-third of their production greenhouse gas (GHG) emissions” and find in
their analysis of di↵erent battery chemistries that lithium nickel manganese cobalt oxide bat-
teries with equal proportions of nickel, manganese, and cobalt (NMC11) have life-cycle GHG
emissions of 59.5 kg CO2-eq/kWh. Using the average battery capacity for 2020 (73.004) and
in-context (63.497), we have 4343.744 for 2020 and 3778.063 in-context. After converting the kg
of emissions to tons, multiplying by the SCC, and normalizing by the MSRP, we have 0.016 for
2020 and 0.015 in context. Multiplying by the elasticity and pass-through rate and subtracting
out the portion of the benefits that will accrue to the US government via increased GDP from
avoiding carbon emissions, we have 0.027 for 2020 and 0.026 for in-context.

The sum of the reduction in ICE emissions, increase in grid-related emissions, and upstream
battery production emissions gives our final externality measure of 0.042 (2020) and 0.083 (in-
context) for the global environmental externality for a $1 mechanical increase in subsidies to
BEVs.

Local Externalities Local externalities are estimated in nearly the same way as global
externalities. We use the same energy and gas consumption values. The di↵erence is the
marginal damage per kWh of electricity or gallon of gasoline. We describe the estimation of
these local damages in Appendix C.3. We calculate local damages from increased grid usage
from BEVs of $-0.009 in 2020 and $-0.003 in context. We calculate savings from reduced gasoline
consumption of $0.009 in 2020 and $0.009 in-context from the counterfactual ICE. Taking the
di↵erence between the grid usage and gas consumption yields total benefits of $0.000 and $0.006,
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respectively. After multiplying by the price elasticity and pass-through rate, it suggests $1 of
mechanical spending on the subsidy delivers local environmental benefits of $0.000 in 2020 and
$0.010 in context.

Rebound The previous analysis assumes that the increased consumption of BEVs does
not a↵ect grid-wide electricity prices. We now consider some general equilibrium e↵ects where
the increased use of BEVs increases the price of electricity and thus decreases electricity con-
sumption. We assume this e↵ect does not lead to a secondary rebound in using ICE vehicles
because while we allow for local production of electricity with upward-sloping supply curves, we
assume a flat global supply curve for gasoline so that there are few if any rebound e↵ects in the
gasoline market. The rebound e↵ect is calculated as 1

1�"D/"S
where "D is the demand elasticity

for electricity, which is -0.19 and comes from DOI (2021) and "S is the supply elasticity for
electricity, which is 0.78 (see Appendix C.1.4 for calculation). With this rebound e↵ect of about
20% multiplied by the previously calculated global and local damages from electricity consump-
tion for BEVs, we now have a decrease in damages of 0.023 in 2020 and 0.017 in-context from
less electricity consumption.

Learning-by-Doing Our model of learning-by-doing is described in Appendix B. Here
we describe any necessary preliminary calculations as well as the data sources for the inputs of
the model. There are nine inputs into the model: the demand elasticity for BEVs, the discount
rate, the learning rate, the fraction of a BEV’s price that is from non-battery components (we’ll
refer to this as the fixed cost ratio), the marginal sales in a given year, the cumulative sales
up until the year of interest, the net MSRP, the environmental damage per EV, and the social
cost of carbon (SCC).

The demand elasticity for this policy of -2.1 comes directly from the paper. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating to
future SCC values is described in Section 3.2. The net MSRP is as described at the top of the
WTP section. The last input is the SCC, for which we use our baseline specification that has a
value of 193 for 2020 and allow it to vary over time following projections of a rising SCC from
the Environmental Protection Agency’s recent guidance regarding the social cost of carbon at
a 2% discount rate.

This leaves the fixed cost ratio, marginal sales, and cumulative sales to describe. Marginal
and cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and
Trancik (2021). They report a representative series of the price of all types of lithium-ion
cells and one for the market size of all types of lithium-ion cells, measured in energy capacity.
However, the price data only goes until 2018 and the sales data until 2016, so we append price
data from the Department of Energy and sales data from the IEA. For 2020, the marginal sales
are 167700 MWh of batteries and the cumulative sales are 917708 starting from 1991. For
in-context, the average marginal sales are 62,906 and the average cumulative sales are 337250.
The price per kWh in 2020 is $181.978 and over 2015-18 on average is $226.306. To calculate
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the fixed cost ratio, we take the price per kWh and multiply it by the sales-weighted average
battery capacity for EVs in 2020, 73.004 kWh (battery capacity for each model comes from
Edmunds), or 2015-18, 63.497 kWh. We then divide this by the MSRP ($54,025 or $61,678) to
get the proportion of the cost due to the battery of 0.246 for 2020 and 0.213 for in-context. One
minus that proportion gives us our fixed cost ratio of 0.754 for 2020 and 0.787 for in-context.
Recall that for our learning-by-doing model we only think the learning is a↵ecting the battery
price and not the price of other parts of the vehicle, so any price and environmental benefits will
be a result of only those battery prices coming down. Following the steps outlined in Appendix
B, we obtain a dynamic environmental component for 2020 (in-context) of 0.025 (0.105) and a
dynamic price component of 0.309 (0.261).

Profits Lastly for WTP, we estimate the gasoline producers’ and utilities’ WTP for the
subsidy. Since the gasoline market has higher markups than the average market and electricity
markets are heavily regulated to have fixed levels of markups, we believe this is an important
component to consider. Using the previously estimated increase in electricity consumption and
decrease in gas consumption, we calculate the producers’ WTP as the markup multiplied by
the change in electricity or gas, normalized by the net MSRP, and then multiplied by the elas-
ticity and the pass-through rate. For each year of the car’s lifetime, the annual profits will be
discounted. For gasoline, this is 2,857.1/2,993.9 gallons of gasoline multiplied by 0.613/0.682
markup (discounted each year), normalized by the net MSRP, multiplied by the elasticity and
the 85% pass-through rate, and finally we subtract out 21% of the surplus due to the e↵ective
corporate tax rate to get 0.040/0.045. For utilities, we have 34,476/34,458 kWh of electricity
multiplied by 0.011/0.048 markup, normalized, and multiplied by the same elasticity and pass-
through rate to get 0.009/0.045.

With the various components, we can now calculate the total WTP of 1.368 for 2020 and 1.477
for in-context.

Cost The cost of a $1 mechanical increase in EV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits taxes collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs In 2020 and in context there are some existing federal and state
subsidies for BEVs that an additional dollar of spending will spur further behavioral e↵ects
that will increase the spending from the preexisting programs. Federally in 2020 most BEVs no
longer qualified for the $7,500 subsidy from the Qualified Plug-In Electric Drive Motor Vehicle
Credit. Only eight models qualified and some of those for less than the full amount. EERE
reports the subsidy each model qualified for and when it stopped qualifying for the maximum
amount and subsequent smaller amounts. Similar to how we estimate the sales-weighted aver-
age for other parameters, we estimate a sales-weighted average federal subsidy of $42.98 in 2020
and $7021.44 in-context. Normalizing that value by the net MSRP gives us $0.001 in 2020 and
$0.154 in-context. Finally, multiplying by the elasticity gives us the federal fiscal externality of
0.001 for 2020 and 0.275 for in-context.

178



For state subsidies, we use the Alternative Fuels Data Center’s (AFDC) database on in-
centives and laws related to alternative fuels and advanced vehicles. Nine states in 2020 have
subsidies for BEVs, with varying levels of subsidy size, MSRP eligibility rules, and income
eligibility rules. For example in Oregon there was a $7,500 subsidy that applied if the battery
was greater than 10 kWh, the MSRP was less than $50,000, and the income for a household
of one was below $54,360. If subsidies di↵er by driver’s income, we scale the subsidy based
on the approximate proportion of EV drivers within that income constraint. Muehlegger &
Rapson (2019) report the proportion of EV drivers within income categories and find that 14%
have household incomes between 0 and $49,000 and 30% have incomes between 50 and $99,000.
This implies (assuming a uniform distribution of EV purchasers within each bucket) that 16.7%
of Oregon’s EV purchasers were eligible for the subsidy. In 2020, only 63% of BEVs had an
MSRP of less than $50,000. Thus, we can estimate that the percent of EV purchasers who
received the subsidy (assuming independence) is 0.63 · 0.167 = 0.1056. The average subsidy
received in Oregon was $792.33. We repeat these steps for the other eight states and then we
use the AFDC’s data on how many EV registrations occur in each state to compute a final
EV registration-weighted average state subsidy of $604.27. This value normalized by the net
MSRP and multiplied by the elasticity gives us the state fiscal externality of 0.024.

Since the in-context MVPF is looking at a specific state’s subsidy, we take the subsidy
amount to be $9,000 as reported in the text of Muehlegger and Rapson (2022). When normal-
ized and multiplied by the elasticity, this gives us a state fiscal externality of 0.414.

Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state
and federal gas tax rates as described in Appendix E.5. The FE is the elasticity multiplied by
the tax rate of 0.465/0.434 multiplied by the decrease in gas consumption from ICE vehicles of
2,857.1/2,993.9 and normalized by the net MSRP to get 0.039/0.041.

Profits Tax FE Similarly to gasoline taxes, we have an average combined revenue rate of
0.006/0.026 that accounts for profits to publicly-owned utilities and corporate taxes on privately
owned utilities as described in Appendix C.1.3. The FE is calculated in the same way as the
gas tax FE to get 0.005/0.025.

Climate FE Finally, the climate fiscal externality comes from the increased GDP due
to decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a)
and estimates that 15% of that avoided GDP loss (which is 50% of the SCC) would flow
to the US. Since the average tax rate in the US is 25.54%, we estimate the climate FE as
0.15 · 0.2554 · 0.5 = 1.9% of the static global environmental externality and the dynamic global
environmental externality that results from learning by doing. Taking those two pieces and
multiplying their sum by 1.9% gives us -0.003/-0.005.

Thus, our final cost is 1.067/1.712, which gives us our MVPFs of 1.282 and 0.863.
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E.2 Hybrid Electric Vehicles

E.2.1 HEV USA - Income Tax Credit

Gallagher and Muehlegger (2011) analyze eight state-level income tax credits for hybrid vehicles
o↵ered between 2000 and 2006. The programs each varied in the value of the incentive, the
time they were in e↵ect, and eligibility requirements. Using a fixed-e↵ect specification, they
estimate the e↵ect of a $1,000 increase in financial incentives to be a 2.39% increase in per
capita HEV sales. We’ll translate this into an elasticity below.

Throughout this section, the “in-context” specification will mean the twelve states (CO,
MD, NY, OR, PA, SC, UT, and WV) from 2000 to 2006, which is the time and geography
analyzed by the paper.

WTP The WTP for an expansion of HEV subsidies is the sum of the transfer (which we
normalize to 1) plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the elasticity (-0.430) times the societal willingness to pay for
one additional dollar of spending on the HEV, V/p. We estimate V/p separately by focusing
on the per-car externalities V and the relevant consumer price net of subsidies, p. To mea-
sure consumer prices, we use the manufacturer’s suggested retail price (MSRP) for each HEV
model year from Edmunds and Kelley Blue Book and we compute a sales-weighted average
using data from Kelley Blue Book’s Electrified Light-Vehicle Sales Report for Q4 2021 which
includes estimates of 2020 sales of each HEV model. For 2020 we have an average MSRP of
$33,464. The total subsidy is the sum of the average federal and state-level subsidies in 2020,
which we describe in more detail in the Fiscal Externalities section, and is $0. To compute the
elasticity, we take the semi-elasticity reported in the paper 0.024, divide it by $1,000, and then
multiply it by the MSRP net of subsidies for the in-context specification, $17,000. This gives
us an elasticity of -0.430.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $20,084, which net of the
average federal subsidy over 2000-2006 and the average subsidy among the twelve states leaves
us with a net MSRP of $17,000.

Transfer We consider a $1 increase in the HEV subsidy so that inframarginal purchasers
value this transfer at $1.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the societal WTP for avoiding
the global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle
and the WTP for facing the global pollutants from driving a hybrid electric vehicle (HEV).
We calculate the two societal WTPs in almost identical ways, only varying the MPG for each
vehicle. HEV Global Externalities To determine the damages from one hybrid vehicle, we
need to know how many gallons of gas the average HEV uses each year and the average vehicle
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miles traveled (VMT) driven. EERE reports the gas mileage of each model of HEV. Combining
this data with the sales data mentioned above, we can calculate a sales-weighted average fuel
economy of an HEV for a given year. For 2020, this average fuel economy is 42.520 and for
in-context is 40.842.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as ”Automobile/Car/Station Wagon”, ”Van
(Mini/Cargo/Passenger)”, ”SUV (Santa Fe, Tahoe, Jeep, etc.), ”Pickup Truck”, and ”Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is.

Throughout our analysis, we assume ICE vehicles and HEVs have the same VMT, although
our primary results are robust to reasonable variations in this assumption. 204 We assume a
17-year lifespan for both ICE vehicles and HEVs, so we use the VMT numbers corresponding
to each year of a car’s lifespan within that range. The survey reports an average VMT of 12,245
miles for the first year with the remaining values of VMT ranging between 5,885 (in the last
year) and 13,078 (in the fifth year). For in-context, we impute age-state-level VMT data using
the NHTS VMT by household state and vehicle type. We calculate a percent di↵erence between
the sample-weighted average VMT across all ages and each age’s VMT. Then, we assume this
percent di↵erence holds within states. Thus, we use the population-weighted average of the
twelve sample states’ imputed VMTs for the in-context specification.

Using the gas consumption for an HEV in each year of its lifetime, we estimate the dam-
ages from an HEV with the estimated pollutants as described in Appendix C.3. Since the
VMT changes for each year of the car’s lifetime, the damages each year change as well. For
exposition, the first year’s gasoline consumption will be 316.721 gallons in 2020 and 302.455
in-context which leads to $600.963 and $445.390 respectively, of damages from gasoline. See a
more detailed description of the gasoline externalities calculations in Appendix C.3. We then
estimate the damages for each year of the vehicle’s lifetime, which totals 8342.157 in damages
in 2020 and -4.9e+03 in context. Normalized by the net MSRP, we have 0.249 for 2020 and
-0.291 for in-context.

Finally, we take this amount and multiply it by the elasticity of -0.430 and we subtract
out the portion of the benefits that will accrue to the US government via the climate FE
from increased GDP from avoiding carbon emissions, which is 1.9% of the total environmental
externality in our baseline specification (see Section 4). Writing this out is 0.249 ·�0.430 · (1�
0.15 · 0.2554 · 0.5). Thus, our final values for the damages from using an HEV are -0.105 (2020)
and -0.116 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the HEVs and estimate a counterfactual average fuel economy based on Muehlegger and
Rapson (2022). They report in Table 3 of their paper an estimated e↵ect of hybrid vehicle
incentives on fleet gallons per mile of -0.000011. Assuming this result holds over time, we apply
the formula suggested by the paper 1 / ((1/mpg)��0.000011 ⇤ 100), where mpg is the average
HEV mpg in a given year, to calculate the counterfactual ICE mpg for each year. This gives us

204It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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a counterfactual MPG of 40.620 in 2020 and 39.081 in context. We also explore the robustness
of our results to assuming HEVs displace an average fleet light duty vehicle, which slightly
raises the MVPF to 1.023.

In the first year of the counterfactual ICE vehicle’s life, then, we estimate it consumed
331.535 gallons of gas in 2020 and 316.085 in context.

With the gas consumed by an ICE vehicle in each year of its life, we estimate the total
damages from an ICE with the estimated pollutants as described in Appendix C.3. Again,
we take this amount and normalize it by the net MSRP of an HEV to get 0.261 for 2020 and
0.301 in-context, and multiply it by the elasticity to get 0.112 and 0.122 and we subtract out
the portion of the benefits that will accrue to the US government via the climate FE from
increased GDP from avoiding carbon emissions, which is 1.9% of the total amount (see Section
4). Thus, $1 of spending on an HEV generates $0.261 of environmental savings from reduced
ICE emissions. Multiplying by the elasticity, this suggests that a $1 increase in the subsidy for
an HEV leads to a reduction in damages from driving the counterfactual ICE is 0.110 in 2020
and 0.120 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in hybrid vehicles. Using GREET 2020.NET from the Argonne National Labora-
tory, Pipitone et al. (2021) find that the production and materials of average HEV battery lead
to 234 kg CO2 eq emissions. After converting the kg of emissions to tons, multiplying by the
SCC, and normalizing by the MSRP, we have 0.001 for 2020 and 0.002 in context. Multiplying
by the elasticity and subtracting out the portion of the benefits that will accrue to the US
government via increased GDP from avoiding carbon emissions, we have 0.001 for 2020 and
0.001 for in-context.

The di↵erence in ICE vs. HEV emissions plus upstream battery production emissions gives
our final externality measure of 0.004 (2020) and 0.003 (in-context) for the global environmental
externality for a $1 mechanical increase in subsidies to HEVs.

Local Externalities Local externalities are estimated in nearly the same way as global
externalities. We use the same gas consumption values. The di↵erence is the marginal damage
per gallon of gasoline. We describe the estimation of these local damages in Appendices C.3.2
and C.1. We calculate 0.028 in 2020 and -887.598 in-context in local damages from HEVs
and 0.022 in 2020 and 0.045 in-context from the counterfactual ICE. The di↵erence between
these yields 0.050 and -887.553, respectively for our 2020 and in-context specifications. After
multiplying by the elasticity, we have 0.000 and 0.001.

Rebound We assume there is a rebound e↵ect due to the lowered cost of driving for HEVs
due to their higher fuel economy. Small and Van Dender (2007) estimate an elasticity of vehicle
miles traveled (VMT) with respect to fuel costs per mile of -0.221. This rebound e↵ect imposes
additional damages on society that counteract the benefits of higher fuel economy. To calculate
the rebound e↵ect, we first calculate the percent di↵erence in the cost of driving one mile in
an HEV compared to the cost in our counterfactual ICE vehicle, which is -0.045 in 2020 and
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-0.043 in-context. After multiplying by the Small and Van Dender elasticity, we have 0.010 in
2020 and 0.010 in context. We then take the local and global damages and multiply them by
the rebound % to arrive at the total externality of -0.004 for 2020 and -0.005 in-context. This
same 1.1% increase is applied to the gas consumption values used for gasoline producer profits
and the gasoline tax fiscal externality discussed below.

Learning-by-Doing Next, we incorporate potential externalities arising from learning-
by-doing in the production of batteries. Relative to the baseline model described in the text,
we need to account for the fact that the battery is a small fraction of the total cost of the
car; we discuss how we incorporate this in Appendix B. Here we describe any necessary pre-
liminary calculations as well as the data sources for the inputs of the model. There are nine
inputs into the model: the demand elasticity for HEVs, the discount rate, the learning rate,
the fraction of an HEV’s price that is from non-battery components (we’ll refer to this as the
fixed cost ratio), the flow of sales in a given year, the cumulative sales up until the year of in-
terest, the net MSRP, the environmental damage per HEV, and the social cost of carbon (SCC).

The demand elasticity for this policy of -0.430 is calculated as described above. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating
to future SCC values is described in Section 3.2. The net MSRP is as described at the top
of the WTP section. The last input is the SCC, which we use a baseline value of $193 for
2020 and allow to vary over time following projections of a rising SCC from the Environmental
Protection Agency’s recent guidance regarding the social cost of carbon at a 2% discount rate.

This leaves the fixed cost ratio, marginal, and cumulative sales to describe. Marginal and
cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and Trancik
(2021). They report a representative series of the price of all types of lithium-ion cells and one
for the market size of all types of lithium-ion cells, measured in energy capacity. However, the
price data only goes until 2018 and the sales data until 2016, so we append price data from the
Department of Energy and sales data from the IEA. For 2020, the marginal sales are 167700
MWh of batteries and the cumulative sales are 917708 starting from 1991. For in-context, the
average marginal sales are 2,029.4 and the average cumulative sales are 5,940.7. The price per
kWh in 2020 is $176.532 and over 2000-06 on average is $710.256. To calculate the fixed cost
ratio, we take the price per kWh and multiply it by the sales-weighted average battery capacity
for EVs in 2020, 1.469 kWh (battery capacity for each model comes from Edmunds), or 2000-06,
1.354 kWh. We then divide this by the MSRP ($33,464 or $20,084) to get the proportion of the
cost due to the battery of 0.008 for 2020 and 0.033 for in-context. One minus that proportion
gives us our fixed cost ratio of 0.992 for 2020 and 0.967 for in-context. Following the steps
outlined in Appendix B, we obtain a dynamic environmental component for 2020 (in-context)
of 0.000 (0.000) and a dynamic price component of 0.002 (0.009).
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Profits Lastly for WTP, we estimate the gasoline producers’ WTP for the subsidy. If
gasoline has higher markups than other goods in the economy, a change in gasoline demand
can cause an externality on producers from the change in profits in the economy. Appendix E.5
discusses our approach to estimating the markups in the gasoline market, which we estimate
to be 35% in 2020, relative to a national average of 8%, for a net markup of 27%. Using the
previously estimated gas consumption for the counterfactual ICE and HEVs, we calculate the
producers’ WTP as the markup multiplied by the present discounted value of the change in
gasoline consumption, normalized by the net MSRP, and then multiplied by the elasticity. This
yields 165.883/165.804 gallons of gasoline multiplied by 0.613/0.671 markup (discounted each
year), normalized by the net MSRP, multiplied by the elasticity, and finally we subtract out
21% of the surplus due to the e↵ective corporate tax rate to get -0.001/0.002.

With all of these components, we can now calculate the total WTP of 1.002 for 2020 and 1.011
for in-context.

Cost The cost of $1 mechanical increase in HEV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits tax collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs For the in-context specification, there are some existing federal
and state subsidies for HEVs that an additional dollar of spending will spur further behavioral
e↵ects that will increase the spending from the preexisting programs. By 2020, though, there
were no more subsidies available for non-plug-in hybrid vehicles. In Table 3 of Gallagher and
Muehlegger (2011), they report an average federal tax incentive of $1,073. Normalizing that
value by the net MSRP gives us $0.063 in-context. Finally, multiplying by the elasticity gives
us the federal fiscal externality of 0.026 for in-context. This quantity is zero for 2020 because
there was no subsidy in place.

There were also no state-level subsidies available for HEVs in 2020. For in-context, we take
the subsidy amount to be $2,011, which is the average of the state income tax credit and sales
tax incentives reported in the text of Gallagher and Muehlegger (2011). When normalized and
multiplied by the elasticity, this gives us a state fiscal externality of 0.048.

Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state
and federal gas tax rates as described in Appendix E.5. The FE is the elasticity multiplied by
the tax rate, which is 0.465 in 2020 and 0.377 in context multiplied by the di↵erence in gas
consumption between ICE and HEV vehicles of 165.883 for 2020 and 165.804 for in-context and
normalized by the consumer price net of subsidies to get 0.001/0.002.

Profits Tax FE Since we estimate gasoline producers’ profits, we account for corporate
profits taxation as a fiscal externality. The corporate tax rate is 21%, so multiplying the gasoline
producers’ WTP by 0.21, we have -0.000 for the 2020 specification and 0.000 for the in-context
specification.
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Climate FE Finally, the climate fiscal externality comes from the increased GDP due
to decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a)
estimates that 15% of that avoided GDP loss (which is 50% of the SCC) would flow to the US.
Since the average tax rate in the US is 25.54%, we estimate the climate FE as 0.15 · 0.2554 ·
0.5 = 1.9% of the static global environmental externality and the dynamic global environmental
externality that results from learning by doing. Taking those two pieces and multiplying their
sum by 1.9% gives us -0.000/-0.000.

Thus our final cost is 1.001/1.076, which gives us our MVPFs of 1.002 and 0.940.

E.2.2 Federal Income Tax Credit for Hybrid Vehicles

Beresteanu and Li (2011) analyze the federal income tax credit for hybrid vehicles o↵ered be-
tween 2000 and 2006. The program authorized a credit of up to $3,400, depending on the model
and the improvement in fuel economy relative to the nonhybrid counterpart. Using a market
equilibrium model with both demand and supply sides in the spirit of Berry et al. (1995), they
estimate the e↵ect of a $2,276 increase in financial incentives to be a 19.75% increase in per
capita HEV sales. We’ll translate this into an elasticity below.

Throughout this section, the “in-context” specification will mean the eighteen states the
authors have data from (AR, AZ, CA, CO, CT, FL, GA, IA, MO, NM, NV, NY, OH, PA, TN,
TX, WA, and WI) in 2006, which is the time analyzed by the paper.

WTP The WTP for an expansion of HEV subsidies is the sum of the transfer (which we
normalize to 1) plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the elasticity (-1.985) times the societal willingness to pay for
one additional dollar of spending on the HEV, V/p. We estimate V/p separately by focusing
on the per-car externalities V and the relevant consumer price net of subsidies, p. To measure
consumer prices, we use the manufacturer’s suggested retail price (MSRP) for each HEV model
year from Edmunds and Kelley Blue Book and we compute a sales-weighted average using data
from Kelley Blue Book’s Electrified Light-Vehicle Sales Report for Q4 2021, which includes
estimates of 2020 sales of each HEV model. For 2020 we have an average MSRP of $33,464.
The total subsidy is the sum of the average federal and state-level subsidies in 2020, which we
describe in more detail in the Fiscal Externalities section, and is $0. To compute the elasticity,
we take the semi-elasticity reported in the paper 0.198, divide it by $1,000, and then multiply
it by the MSRP net of subsidies for the in-context specification, $21,736. This gives us an
elasticity of -1.985.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $25,758, which net of the
average state subsidy in 2006, and the average federal subsidy leaves us with a net MSRP of
$21,736.
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Transfer We consider a $1 increase in the HEV subsidy so that inframarginal purchasers
value this transfer at $1.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the societal WTP for avoiding
the global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle
and the WTP for facing the global pollutants from driving a hybrid electric vehicle (HEV).
We calculate the two societal WTPs in almost identical ways, only varying the MPG for each
vehicle. HEV Global Externalities To determine the damages from one hybrid vehicle, we
need to know how many gallons of gas the average HEV uses each year and the average vehicle
miles traveled (VMT) driven. EERE reports the gas mileage of each model of HEV. Combining
this data with the sales data mentioned above, we can calculate a sales-weighted average fuel
economy of an HEV for a given year. For 2020, this average fuel economy is 42.52 and for
in-context is 38.44.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as ”Automobile/Car/Station Wagon”, ”Van
(Mini/Cargo/Passenger)”, ”SUV (Santa Fe, Tahoe, Jeep, etc.), ”Pickup Truck”, and ”Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is. Throughout our analysis, we assume ICE vehicles and HEVs have the
same VMT, although our primary results are robust to reasonable variations in this assumption.
205 We assume a 20-year lifespan for both ICE vehicles and HEVs, so we use the VMT numbers
corresponding to each year of a car’s lifespan within that range. The survey reports an average
VMT of 12,245 miles for the first year with the remaining values of VMT ranging between 5,885
(in the last year) and 13,078 (in the fifth year). For in-context, we impute age-state-level VMT
data using the NHTS VMT by household state and vehicle type. We calculate a percent dif-
ference between the sample-weighted average VMT across all ages and each age’s VMT. Then,
we assume this percent di↵erence holds within states. Thus, we use the population-weighted
average of the twelve sample states’ imputed VMTs for the in-context specification.

Using the gas consumption for an HEV in each year of its lifetime, we estimate the dam-
ages from an HEV with the estimated pollutants as described in Appendix C.3. Since the
VMT changes for each year of the car’s lifetime, the damages each year change as well. For
exposition, the first year’s gasoline consumption will be 316.721 gallons in 2020 and 333.344
in-context which leads to 600.963 and 600.963 respectively, of damages from gasoline. See a
more detailed description of the gasoline externalities calculations in Appendix C.3. We then
estimate the damages for each year of the vehicle’s lifetime, which totals 8342.157 in damages
in 2020 and 5510.528 in context. Normalized by the net MSRP, we have 0.249 for 2020 and
0.254 for in-context.

Finally, we take this amount and multiply it by the elasticity of -1.985 and we subtract
out the portion of the benefits that will accrue to the US government via the climate FE
from increased GDP from avoiding carbon emissions, which is 1.9% of the total environmental

205It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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externality in our baseline specification (see Section 4). Writing this out is 0.249 ·�1.985 · (1�
0.15 · 0.25540.5). Thus, our final values for the damages from using an HEV are -0.485 (2020)
and -0.469 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the HEVs and estimate a counterfactual average fuel economy based on Muehlegger and
Rapson (2022). They report in Table 3 of their paper an estimated e↵ect of hybrid vehicle
incentives on fleet gallons per mile of -0.000011. Assuming this result holds over time, we apply
the formula suggested by the paper 1 / ((1/mpg)��0.000011 ⇤ 100), where mpg is the average
HEV mpg in a given year, to calculate the counterfactual ICE mpg for each year. This gives us
a counterfactual MPG of 40.62 in 2020 and 36.88 in context. We also explore the robustness of
our results to assuming HEVs displace an average fleet light duty vehicle, which slightly raises
the MVPF to 1.580.

In the first year of the counterfactual ICE vehicle’s life, then, we estimate it consumed
331.535 gallons of gas in 2020 and 347.44 in context.

With the gas consumed by an ICE vehicle in each year of its life, we estimate the total
damages from an ICE with the estimated pollutants as described in Appendix C.3. Again,
we take this amount and normalize it by the net MSRP of an HEV to get 0.261 for 2020 and
0.264 in-context, and multiply it by the elasticity to get 0.518 and 0.498 and we subtract out
the portion of the benefits that will accrue to the US government via the climate FE from
increased GDP from avoiding carbon emissions, which is 1.9% of the total amount (see Section
4). Thus, $1 of spending on an HEV generates $0.261 of environmental savings from reduced
ICE emissions. Multiplying by the elasticity, this suggests that a $1 increase in the subsidy for
an HEV leads to a reduction in damages from driving the counterfactual ICE is 0.508 in 2020
and 0.489 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in hybrid vehicles. Using GREET 2020.NET from the Argonne National Labora-
tory, Pipitone et al. (2021) find that the production and materials of average HEV battery lead
to 234 kg CO2 eq emissions. After converting the kg of emissions to tons, multiplying by the
SCC, and normalizing by the MSRP, we have 0.001 for 2020 and 0.001 in context. Multiplying
by the elasticity and subtracting out the portion of the benefits that will accrue to the US
government via increased GDP from avoiding carbon emissions, we have 0.003 for 2020 and
0.003 for in-context.

The di↵erence in ICE vs. HEV emissions plus upstream battery production emissions gives
our final externality measure of 0.020 (2020) and 0.017 (in-context) for the global environmental
externality for a $1 mechanical increase in subsidies to HEVs.

Local Externalities Local externalities are estimated in nearly the same way as global
externalities. We use the same gas consumption values. The di↵erence is the marginal damage
per gallon of gasoline. We describe the estimation of these local damages in Appendices C.1 and
C.3. We calculate 0.028 in 2020 and 0.038 in-context in local damages from HEVs and 0.022
in 2020 and 0.032 in-context from the counterfactual ICE. The di↵erence between these yields
0.050 and 0.070, respectively for our 2020 and in-context specifications. After multiplying by
the elasticity, we have 0.002 and 0.002.
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Rebound We assume there is a rebound e↵ect due to the lowered cost of driving for HEVs
due to their higher fuel economy. Small and Van Dender (2007) estimate an elasticity of vehicle
miles traveled (VMT) with respect to fuel costs per mile of -0.221. This rebound e↵ect imposes
additional damages on society that counteract the benefits of higher fuel economy. To calculate
the rebound e↵ect, we first calculate the percent di↵erence in the cost of driving one mile in
an HEV compared to the cost in our counterfactual ICE vehicle, which is -0.045 in 2020 and
-0.041 in-context. After multiplying by the Small and Van Dender elasticity, we have 0.010 in
2020 and 0.009 in context. We then take the local and global damages and multiply them by
the rebound % to arrive at the total externality of -0.017 for 2020 and -0.017 in-context. This
same 1.1% increase is applied to the gas consumption values used for gasoline producer profits
and the gasoline tax fiscal externality discussed below.

Learning-by-Doing Next, we incorporate potential externalities arising from learning-
by-doing in the production of batteries. Relative to the baseline model described in the text,
we need to account for the fact that the battery is a small fraction of the total cost of the
car; we discuss how we incorporate this in Appendix B. Here we describe any necessary pre-
liminary calculations as well as the data sources for the inputs of the model. There are nine
inputs into the model: the demand elasticity for HEVs, the discount rate, the learning rate,
the fraction of an HEV’s price that is from non-battery components (we’ll refer to this as the
fixed cost ratio), the flow of sales in a given year, the cumulative sales up until the year of in-
terest, the net MSRP, the environmental damage per HEV, and the social cost of carbon (SCC).

The demand elasticity for this policy of -1.985 is calculated as described above. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating
to future SCC values is described in Section 3.2. The net MSRP is as described at the top of
the WTP section. The last input is the SCC, which we use a baseline value of 193 for 2020 and
allow to vary over time following projections of a rising SCC from the Environmental Protection
Agency’s recent guidance regarding the social cost of carbon at a 2% discount rate.

This leaves the fixed cost ratio, marginal, and cumulative sales to describe. Marginal and
cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and Trancik
(2021). They report a representative series of the price of all types of lithium-ion cells and one
for the market size of all types of lithium-ion cells, measured in energy capacity. However, the
price data only goes until 2018 and the sales data until 2016, so we append price data from the
Department of Energy and sales data from the IEA. For 2020, the marginal sales are 167700
MWh of batteries and the cumulative sales are 917708 starting from 1991. For in-context, the
average marginal sales are 11,343 and the average cumulative sales are 43,801. The price per
kWh in 2020 is $176.532 and over 2000-06 on average is $561.411. To calculate the fixed cost
ratio, we take the price per kWh and multiply it by the sales-weighted average battery capacity
for EVs in 2020, 1.469 kWh (battery capacity for each model comes from Edmunds), or 2000-06,
1.436 kWh. We then divide this by the MSRP ($33,464 or $25,758) to get the proportion of the
cost due to the battery of 0.008 for 2020 and 0.025 for in-context. One minus that proportion
gives us our fixed cost ratio of 0.992 for 2020 and 0.975 for in-context. Following the steps
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outlined in Appendix B, we obtain a dynamic environmental component for 2020 (in-context)
of 0.0001 (0.0002) and a dynamic price component of 0.009 (0.031).

Profits Lastly for WTP, we estimate the gasoline producers’ WTP for the subsidy. If
gasoline has higher markups than other goods in the economy, a change in gasoline demand
can cause an externality on producers from the change in profits in the economy. Appendix E.5
discusses our approach to estimating the markups in the gasoline market, which we estimate
to be 35% in 2020, relative to a national average of 8%, for a net markup of 27%. Using the
previously estimated gas consumptions for the counterfactual ICE and HEVs, we calculate the
producers’ WTP as the markup multiplied by the present discounted value of the change in
gasoline consumption, normalized by the net MSRP, and then multiplied by the elasticity. This
yields 165.883/165.691 gallons of gasoline multiplied by 0.613/0.725 markup (discounted each
year), normalized by the net MSRP, multiplied by the elasticity, and finally we subtract out
21% of the surplus due to the e↵ective corporate tax rate to get -0.004/0.009.

With all of these components, we can now calculate the total WTP of 1.010 for 2020 and 1.043
for in-context.

Cost The cost of $1 mechanical increase in HEV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits tax collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs For the in-context specification, there are some existing federal
and state subsidies for HEVs that an additional dollar of spending will spur further behavioral
e↵ects that will increase the spending from the preexisting programs. By 2020, though, there
were no more subsidies available for non-plug-in hybrid vehicles. In Table 6 of Beresteanu and
Li (2011), they report an average federal credit in 2006 of $2,276. Normalizing that value by
the net MSRP gives us $0.105 in-context. Finally, multiplying by the elasticity gives us the
federal fiscal externality of 0.198 for in-context. This quantity is zero for 2020 because there
was no subsidy in place.

There were also no state-level subsidies available for HEVs in 2020. For in-context, we take
the subsidy amount to be $1746.89, which is the average of the state income tax credit and
sales tax incentives reported in the text of Gallagher and Muehlegger (2011). When normalized
and multiplied by the elasticity, this gives us a state fiscal externality of 0.198.

Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state
and federal gas tax rates as described in Appendix E.5. The FE is the elasticity multiplied by
the tax rate, which is 0.465 in 2020 and 0.387 in context multiplied by the di↵erence in gas
consumption between ICE and HEV vehicles of 165.883 for 2020 and 165.691 for in-context and
normalized by the consumer price net of subsidies to get 0.004/0.006.
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Profits Tax FE Since we estimate gasoline producers’ profits, we account for corporate
profits taxation as a fiscal externality. The corporate tax rate is 21%, so multiplying the gasoline
producers’ WTP by 0.21, we have -0.001 for the 2020 specification and 0.002 for the in-context
specification.

Climate FE Finally, the climate fiscal externality comes from the increased GDP due
to decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a)
and estimates that 15% of that avoided GDP loss (which is 50% of the SCC) would flow
to the US. Since the average tax rate in the US is 25.54%, we estimate the climate FE as
0.15 · 0.5 · 0.2554 = 1.9% of the static global environmental externality and the dynamic global
environmental externality that results from learning by doing. Taking those two pieces and
multiplying their sum by 1.9% gives us -0.000/-0.000.

Thus our final cost is 1.002/1.357, which gives us our MVPFs of 1.008 and 0.769.

E.2.3 HEV USA - Sales Tax Waiver

Gallagher and Muehlegger (2011) analyze four state-level income tax credits for hybrid vehicles
o↵ered between 2000 and 2006. The programs each varied in the value of the incentive, the
time they were in e↵ect, and eligibility requirements. Using a fixed-e↵ect specification, they
estimate the e↵ect of a $1,000 increase in financial incentives to be a 2.39% increase in per
capita HEV sales. We’ll translate this into an elasticity below.

Throughout this section, the “in-context” specification will mean the twelve states (CT,
DC, ME, NM) from 2000 to 2006, which is the time and geography analyzed by the paper.

WTP The WTP for an expansion of HEV subsidies is the sum of the transfer (which we
normalize to 1) plus the environmental and other market externalities discussed in Section 4.
These broadly have the form of the elasticity (-6.916) times the societal willingness to pay for
one additional dollar of spending on the HEV, V/p. We estimate V/p separately by focusing
on the per-car externalities V and the relevant consumer price net of subsidies, p. To mea-
sure consumer prices, we use the manufacturer’s suggested retail price (MSRP) for each HEV
model year from Edmunds and Kelley Blue Book and we compute a sales-weighted average
using data from Kelley Blue Book’s Electrified Light-Vehicle Sales Report for Q4 2021 which
includes estimates of 2020 sales of each HEV model. For 2020 we have an average MSRP of
$33,464. The total subsidy is the sum of the average federal and state-level subsidies in 2020,
which we describe in more detail in the Fiscal Externalities section, and is $0. To compute the
elasticity, we take the semi-elasticity reported in the paper 0.374, divide it by $1,000, and then
multiply it by the MSRP net of subsidies for the in-context specification, $17,974. This gives
us an elasticity of -6.916.

For the in-context specification, the sales data by model comes from the Transportation
Research Center at Argonne National Laboratory and covers all models that are full-sized and
capable of 60 mph up until 2019. This gives us an average MSRP of $20,084, which net of the
average federal subsidy over 2000-2006 and the average subsidy among the twelve states leaves
us with a net MSRP of $17,974.
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Transfer We consider a $1 increase in the HEV subsidy so that inframarginal purchasers
value this transfer at $1.

Global Environmental Externalities As described in the main text of the paper, the
global environmental benefits are calculated as the di↵erence in the societal WTP for avoiding
the global pollutants from driving the counterfactual internal combustion engine (ICE) vehicle
and the WTP for facing the global pollutants from driving a hybrid electric vehicle (HEV).
We calculate the two societal WTPs in almost identical ways, only varying the MPG for each
vehicle. HEV Global Externalities To determine the damages from one hybrid vehicle, we
need to know how many gallons of gas the average HEV uses each year and the average vehicle
miles traveled (VMT) driven. EERE reports the gas mileage of each model of HEV. Combining
this data with the sales data mentioned above, we can calculate a sales-weighted average fuel
economy of an HEV for a given year. For 2020, this average fuel economy is 42.520 and for
in-context is 40.842.

For VMT we use the 2017 results from the Federal Highway Administration’s National
Household Travel Survey (NHTS). They report VMT by vehicle age and vehicle type, where
the eight types of vehicles include options such as ”Automobile/Car/Station Wagon”, ”Van
(Mini/Cargo/Passenger)”, ”SUV (Santa Fe, Tahoe, Jeep, etc.), ”Pickup Truck”, and ”Other
Truck”. We use for our main specification the VMT reported in the Automobile/Car/Station
Wagon category as is.

Throughout our analysis, we assume ICE vehicles and HEVs have the same VMT, although
our primary results are robust to reasonable variations in this assumption. 206 We assume a
17-year lifespan for both ICE vehicles and HEVs, so we use the VMT numbers corresponding
to each year of a car’s lifespan within that range. The survey reports an average VMT of 12,245
miles for the first year with the remaining values of VMT ranging between 5,885 (in the last
year) and 13,078 (in the fifth year). For in-context, we impute age-state-level VMT data using
the NHTS VMT by household state and vehicle type. We calculate a percent di↵erence between
the sample-weighted average VMT across all ages and each age’s VMT. Then, we assume this
percent di↵erence holds within states. Thus, we use the population-weighted average of the
twelve sample states’ imputed VMTs for the in-context specification.

Using the gas consumption for an HEV in each year of its lifetime, we estimate the dam-
ages from an HEV with the estimated pollutants as described in Appendix C.3. Since the
VMT changes for each year of the car’s lifetime, the damages each year change as well. For
exposition, the first year’s gasoline consumption will be 316.721 gallons in 2020 and 307.184
in-context which leads to 600.963 and 445.390 respectively, of damages from gasoline. See a
more detailed description of the gasoline externalities calculations in Appendix C.3. We then
estimate the damages for each year of the vehicle’s lifetime, which totals 8342.157 in damages
in 2020 and -4.9e+03 in context. Normalized by the net MSRP, we have 0.249 for 2020 and
-0.275 for in-context.

206It would be straightforward to adjust our approach to allow for di↵erential mileage driven, noting that one
would need to distinguish between total reduction in miles and substitution to other ICE vehicles.
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Finally, we take this amount and multiply it by the elasticity of -6.916 and we subtract
out the portion of the benefits that will accrue to the US government via the climate FE
from increased GDP from avoiding carbon emissions, which is 1.9% of the total environmental
externality in our baseline specification (see Section 4). Writing this out is 0.249 ·�6.916 · (1�
0.15 · 0.2554 · 0.5). Thus, our final values for the damages from using an HEV are -1.691 (2020)
and -1.813 (in-context).

ICE Global Externalities For the counterfactual ICE vehicle, we use the same VMT as
for the HEVs and estimate a counterfactual average fuel economy based on Muehlegger and
Rapson (2022). They report in Table 3 of their paper an estimated e↵ect of hybrid vehicle
incentives on fleet gallons per mile of -0.000011. Assuming this result holds over time, we apply
the formula suggested by the paper 1 / ((1/mpg)��0.000011 ⇤ 100), where mpg is the average
HEV mpg in a given year, to calculate the counterfactual ICE mpg for each year. This gives us
a counterfactual MPG of 40.620 in 2020 and 39.081 in context. We also explore the robustness
of our results to assuming HEVs displace an average fleet light duty vehicle, which slightly
raises the MVPF to 1.231.

In the first year of the counterfactual ICE vehicle’s life, then, we estimate it consumed
331.535 gallons of gas in 2020 and 321.026 in context.

With the gas consumed by an ICE vehicle in each year of its life, we estimate the total
damages from an ICE with the estimated pollutants as described in Appendix C.3. Again,
we take this amount and normalize it by the net MSRP of an HEV to get 0.261 for 2020 and
0.285 in-context, and multiply it by the elasticity to get 1.805 and 1.913 and we subtract out
the portion of the benefits that will accrue to the US government via the climate FE from
increased GDP from avoiding carbon emissions, which is 1.9% of the total amount (see Section
4). Thus, $1 of spending on an HEV generates $0.261 of environmental savings from reduced
ICE emissions. Multiplying by the elasticity, this suggests that a $1 increase in the subsidy for
an HEV leads to a reduction in damages from driving the counterfactual ICE is 1.770 in 2020
and 1.876 in context.

Upstream Battery Externalities We also include emissions from the production of the
batteries used in hybrid vehicles. Using GREET 2020.NET from the Argonne National Labora-
tory, Pipitone et al. (2021) find that the production and materials of average HEV battery lead
to 234 kg CO2 eq emissions. After converting the kg of emissions to tons, multiplying by the
SCC, and normalizing by the MSRP, we have 0.001 for 2020 and 0.002 in context. Multiplying
by the elasticity and subtracting out the portion of the benefits that will accrue to the US
government via increased GDP from avoiding carbon emissions, we have 0.009 for 2020 and
0.012 for in-context.

The di↵erence in ICE vs. HEV emissions plus upstream battery production emissions gives
our final externality measure of 0.070 (2020) and 0.052 (in-context) for the global environmental
externality for a $1 mechanical increase in subsidies to HEVs.

Local Externalities Local externalities are estimated in nearly the same way as global
externalities. We use the same gas consumption values. The di↵erence is the marginal damage
per gallon of gasoline. We describe the estimation of these local damages in Appendices C.1 and
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C.3. We calculate 0.028 in 2020 and -887.598 in-context in local damages from HEVs and 0.022
in 2020 and 0.043 in-context from the counterfactual ICE. The di↵erence between these yields
0.050 and -887.555, respectively for our 2020 and in-context specifications. After multiplying
by the elasticity, we have 0.007 and 0.012.

Rebound We assume there is a rebound e↵ect due to the lowered cost of driving for HEVs
due to their higher fuel economy. Small and Van Dender (2007) estimate an elasticity of vehicle
miles traveled (VMT) with respect to fuel costs per mile of -0.221. This rebound e↵ect imposes
additional damages on society that counteract the benefits of higher fuel economy. To calculate
the rebound e↵ect, we first calculate the percent di↵erence in the cost of driving one mile in
an HEV compared to the cost in our counterfactual ICE vehicle, which is -0.045 in 2020 and
-0.043 in-context. After multiplying by the Small and Van Dender elasticity, we have 0.010 in
2020 and 0.010 in context. We then take the local and global damages and multiply them by
the rebound % to arrive at the total externality of -0.059 for 2020 and -0.072 in-context. This
same 1.1% increase is applied to the gas consumption values used for gasoline producer profits
and the gasoline tax fiscal externality discussed below.

Learning-by-Doing Next, we incorporate potential externalities arising from learning-
by-doing in the production of batteries. Relative to the baseline model described in the text,
we need to account for the fact that the battery is a small fraction of the total cost of the
car; we discuss how we incorporate this in Appendix B. Here we describe any necessary pre-
liminary calculations as well as the data sources for the inputs of the model. There are nine
inputs into the model: the demand elasticity for HEVs, the discount rate, the learning rate,
the fraction of an HEV’s price that is from non-battery components (we’ll refer to this as the
fixed cost ratio), the flow of sales in a given year, the cumulative sales up until the year of in-
terest, the net MSRP, the environmental damage per HEV, and the social cost of carbon (SCC).

The demand elasticity for this policy of -6.916 is calculated as described above. Our baseline
discount rate is 2%. The learning rate for batteries of 0.421 comes from Way et al. (2022). We
show in Appendix B how we adjust for the fact that batteries comprise only a fraction of the
total cost of the car. Environmental damages are as above for the global and local externalities
but converted back to the per-car level. However, we allow for the environmental externality
to vary over time to account for the SCC increasing over time. Our method of extrapolating
to future SCC values is described in Section 3.2. The net MSRP is as described at the top of
the WTP section. The last input is the SCC, which we use a baseline value of 193 for 2020 and
allow to vary over time following projections of a rising SCC from the Environmental Protection
Agency’s recent guidance regarding the social cost of carbon at a 2% discount rate.

This leaves the fixed cost ratio, marginal, and cumulative sales to describe. Marginal and
cumulative sales of MWh of batteries as well as the cost per kWh come from Ziegler and Trancik
(2021). They report a representative series of the price of all types of lithium-ion cells and one
for the market size of all types of lithium-ion cells, measured in energy capacity. However, the
price data only goes until 2018 and the sales data until 2016, so we append price data from the
Department of Energy and sales data from the IEA. For 2020, the marginal sales are 167700
MWh of batteries and the cumulative sales are 917708 starting from 1991. For in-context, the
average marginal sales are 2,029.4 and the average cumulative sales are 5,940.7. The price per
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kWh in 2020 is $176.532 and over 2000-06 on average is $710.256. To calculate the fixed cost
ratio, we take the price per kWh and multiply it by the sales-weighted average battery capacity
for EVs in 2020, 1.469 kWh (battery capacity for each model comes from Edmunds), or 2000-06,
1.354 kWh. We then divide this by the MSRP ($33,464 or $20,084) to get the proportion of the
cost due to the battery of 0.008 for 2020 and 0.033 for in-context. One minus that proportion
gives us our fixed cost ratio of 0.992 for 2020 and 0.967 for in-context. Following the steps
outlined in Appendix B, we obtain a dynamic environmental component for 2020 (in-context)
of 0.001 (0.002) and a dynamic price component of 0.031 (0.167).

Profits Lastly for WTP, we estimate the gasoline producers’ WTP for the subsidy. If
gasoline has higher markups than other goods in the economy, a change in gasoline demand
can cause an externality on producers from the change in profits in the economy. Appendix E.5
discusses our approach to estimating the markups in the gasoline market, which we estimate
to be 35% in 2020, relative to a national average of 8%, for a net markup of 27%. Using the
previously estimated gas consumptions for the counterfactual ICE and HEVs, we calculate the
producers’ WTP as the markup multiplied by the present discounted value of the change in
gasoline consumption, normalized by the net MSRP, and then multiplied by the elasticity. This
yields 165.883/165.804 gallons of gasoline multiplied by 0.613/0.671 markup (discounted each
year), normalized by the net MSRP, multiplied by the elasticity, and finally we subtract out
21% of the surplus due to the e↵ective corporate tax rate to get -0.014/0.028.

With all of these components, we can now calculate the total WTP of 1.036 for 2020 and 1.188
for in-context.

Cost The cost of $1 mechanical increase in HEV subsidies is equal to the $1 plus the fiscal
externalities induced by the demand response to the subsidies. These include additional costs
to state and federal subsidies, reductions in gas tax revenue, changes in profits tax collected,
and the climate fiscal externality from changes in CO2 emissions. We discuss each in turn.

State and Federal FEs For the in-context specification, there are some existing federal
and state subsidies for HEVs that an additional dollar of spending will spur further behavioral
e↵ects that will increase the spending from the preexisting programs. By 2020, though, there
were no more subsidies available for non-plug-in hybrid vehicles. In Table 3 of Gallagher and
Muehlegger (2011), they report an average federal tax incentive of $1,073. Normalizing that
value by the net MSRP gives us $0.060 in-context. Finally, multiplying by the elasticity gives
us the federal fiscal externality of 0.401 for in-context. This quantity is zero for 2020 because
there was no subsidy in place.

There were also no state-level subsidies available for HEVs in 2020. For in-context, we take
the subsidy amount to be $1,037, which is the average of the state income tax credit and sales
tax incentives reported in the text of Gallagher and Muehlegger (2011). When normalized and
multiplied by the elasticity, this gives us a state fiscal externality of 0.388.
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Gas Tax FE We also calculate a gasoline tax fiscal externality using the average state and
federal gas tax rates as described in Appendix Section E.5. The FE is the elasticity multiplied
by the tax rate, which is 0.465 in 2020 and 0.377 in context multiplied by the di↵erence in gas
consumption between ICE and HEV vehicles of 165.883 for 2020 and 165.804 for in-context and
normalized by the consumer price net of subsidies to get 0.014/0.024.

Profits Tax FE Since we estimate gasoline producers’ profits, we account for corporate
profits taxation as a fiscal externality. The corporate tax rate is 21%, so multiplying the gasoline
producers’ WTP by 0.21, we have -0.004 for the 2020 specification and 0.008 for the in-context
specification.

Climate FE Finally, the climate fiscal externality comes from the increased GDP due
to decreasing carbon emissions. Our baseline social cost of carbon comes from EPA (2023a)
and estimates that 15% of that avoided GDP loss (which is 50% of the SCC) would flow
to the US. Since the average tax rate in the US is 25.54%, we estimate the climate FE as
0.15 · 0.25540.5 = 1.9% of the static global environmental externality and the dynamic global
environmental externality that results from learning by doing. Taking those two pieces and
multiplying their sum by 1.9% gives us -0.002/-0.002.

Thus our final cost is 1.008/1.819, which gives us our MVPFs of 1.028 and 0.653.

E.3 In-Context Muehlegger and Rapson (2022) Discussion

Figure 1 Panel A presents the components of our WTP and net cost estimates used in the
construction of the MVPF. All components are normalized by the mechanical cost of the subsidy
change (i.e., the cost if individuals did not change their behavior). By construction, individuals
are willing to pay $1 per $1 in mechanical subsidy cost. The fractional pass-through of subsidies
means that this $1 is split between $0.85 for those purchasing the cars and $0.15 for the owners
of CA dealerships that sell EVs.

The next bars in Figure 1 measure the environmental externalities associated with marginal
EV purchases. We use estimates from Holland et al. (2016), who report the fuel economy
of the counterfactual car that an EV customer would have purchased (they find that EVs
displace a cleaner-than-average new light-duty car). We then combine this counterfactual fuel
economy (39.4 MPG) with an estimate of the per-mile externality of a new car as well as
data on the profile of VMT over a vehicle’s lifetime.207 Here, we use estimates of the average
EVs’ VMT from Zhao et al. (2023) that is roughly 61% of VMT for the average gas-powered
car.208 This provides the lifetime environmental benefits from not driving the counterfactual
gas-powered vehicle.209 This leads to a WTP of $0.0155 from local pollutants and $0.195 from
global pollutants. This sums to a total benefit of $0.21 from the reduced gasoline consumption
induced by the subsidy.

207To calculate the per-mile externality we use estimates from new cars in the year of policy implementation.
208This estimate is similar to those presented in Davis (2019) and Burlig et al. (2021).
209We assume the average EV and the average counterfactual car both have 17-year lifetimes (NHTS 2006).

We also assume that EVs have the same total lifetime VMT and distribution of VMT over their lifetimes. Since
we assume the same VMT between gas-powered vehicles and EVs, we do not need to account for damages from
accidents, congestion, or PM2.5 from tires and brakes, which arise per mile traveled. Appendix C describes this
approach in further detail.
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While the decrease in gasoline consumption leads to environmental benefits, the additional
use of electricity leads to partially o↵setting environmental damages. As described in detail in
Appendix C, we incorporate the emissions from additional electricity usage with estimates from
the EPA’s Avoided Emissions and Generation Tool, AVERT (EPA 2024b).210 The environmen-
tal externality per kWh in California between 2015 and 2018 is roughly six times lower than the
national average. Combining the change in emissions with our valuations of those externalities
discussed above for the electric grid, we find that an average EV leads to an increase in $0.087
in welfare cost due to pollution from the grid ($0.016 of this accrues to US residents). On net,
society is willing to pay $0.113 for these global benefits and an additional $0.01 for the local
benefits from substituting toward an EV.

Some of these increases in electricity usage from EVs are potentially moderated through a
rebound e↵ect: the increased electricity demand can push up prices leading to lower electricity
consumption. To account for this, we use estimates of the demand and supply elasticities
of electricity: We use a demand elasticity from the EPA of -0.19 (EIA 2021b) and a supply
elasticity of 0.78. Combining, we show this implies that roughly 20% of the electricity demand is
o↵set by reduced demand due to higher electricity prices.211 This suggests that roughly $0.017
of the environmental harms from increased electricity consumption are o↵set by the rebound
e↵ect.

In addition to environmental externalities from driving the car, we also account for the fact
that the upstream production of EVs is more carbon-intensive than the production of ICE
vehicles due to the nature of the battery production. We incorporate estimates from Winjobi
et al. (2022) that suggest that batteries in particular release 0.06 tons of CO2 per kWh. This
suggests the average EV imposes a global externality from battery production of $0.026 per
EV, leading to an externality of $0.026 per dollar of EV subsidy.

We now turn to the e↵ects of learning-by-doing externalities, which potentially arise in the
EV context in the production of batteries. We use estimates of the recent slope of the learning-
by-doing curve for batteries of ✓ = �0.421 from Way et al. (2022), indicating that a 1% increase
in battery production leads to a reduction in battery costs of 0.42%. We combine this with
an estimated demand elasticity of ✏ = �2.1 and a future discount rate of 2%. As we discuss
in Appendix C, we account for forecasted changes in the cleanliness of the electric grid over
time (i.e., cleaner electric grids in the future) as well as improvements to the fuel economy of
new light-duty cars. This yields an environmental benefit from increased future consumption
of EVs due to lower future prices that is $0.144 per dollar of mechanical cost of the subsidy,
with $0.03 flowing directly to US residents.212

210In the years after 2023, we use grid projections rather than direct emissions estimates from the AVERT
model. In particular, we use the Princeton REPEAT Project’s mid-range forecast from 2023-2050 to estimate
the average combustion share of the grid (Jenkins & Mayfield 2023). We then use estimates from the AVERT
model to map this combustion share of the grid to the environmental externality per kWh. We compute these
estimates at both the state and national level. For projections beyond 2050, we repeat the same process but
assume the combustion share remains constant.
211We do not incorporate a rebound e↵ect for gasoline. This is because we treat gasoline as a global market

where the price does not meaningfully change in response to the demand shock induced by EV purchases. This
di↵ers from the local electricity market.
212While the subsidy encourages the purchase of a new electric vehicle, we only incorporate learning-by-doing

e↵ects associated with the production of batteries. As a result, we find that the learning-by-doing e↵ects of EV
subsidies fall rapidly over time. Intuitively, as the battery costs decline, there is a limit to the extent to which
lower battery prices can lower future EV costs. We show in Appendix B how we account for this dynamic in
learning by doing.
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We also estimate that learning by doing lowers the price of EVs for future purchasers. This
generates a willingness to pay of $0.261 (in examining the incidence of these gains, we allocate
10% percent of this to the US, according to the US share of global EV purchases (IEA 2023).)
Taken together, the learning-by-doing e↵ects increase the value of the subsidy by $0.404 per
dollar of EV subsidy. We note that including these benefits requires one to believe that the
price declines as a function of cumulative production reflect spillovers across firms that are not
internalized through the patent system or other means. In this sense, the inclusion of these
benefits is potentially an upper bound on the MVPF for EVs.

The last benefit we consider is the impact of the policy change on the profits of gasoline and
electricity producers. Our estimates suggest a marginal EV purchase between 2015 and 2018
reduced gasoline consumption by 2,994 gallons over the lifetime of the vehicle. We account
for producer profits using an average markup per gallon of gas of $0.68 per gallon, or 27% of
the retail price between 2015 and 2018.213 This lies above the economy-wide average markup
of 8% (De Loecker et al. 2020), leading to a relative profit loss by producers from the shift
away from gasoline towards other goods.214 Applying a 21% e↵ective corporate tax rate, we
calculate post-tax lost producer profits are equal to $0.045 per dollar of the subsidy.215 By
contrast, electricity suppliers benefit from increased electricity consumption. Electric utilities
are a regulated industry with natural monopolies that sell electricity at a markup, which we
estimate to be 12.9% on top of the 8% economy-wide markup.216,217 We find that the subsidy
generates an increase in electricity company profits of $0.045 per $1 of subsidy. The total
willingness-to-pay for the policy change in California between 2015 and 2018 was $1.518 per $1
of subsidy.

The next several columns in Figure 1 consider the net cost of the subsidy to the govern-
ment. During this time frame, the federal government o↵ered $7,021 in tax credits for EV
purchases.218 This means that the estimated increase in EV purchases costs the federal govern-

213We calculate the markup on a gallon of gasoline by summing the profits at each step in the gasoline supply
chain. First, we estimate crude oil producer profits by subtracting the landed cost of crude oil (EIA 2024d) from
the US refiner crude oil acquisition cost (EIA 2024b). We divide by the average US refinery yield (EIA 2024g)
to convert from barrels of crude oil to gallons of petroleum product. Next, we calculate refiner profits using the
average cost of refining a barrel of crude (Favennec 2022) and the share of the gasoline price that comes from
refiner costs and profits (EIA 2024a). We determine retailer profits by subtracting the average retail gasoline
price (EIA 2024c) from the price retailers pay for a gallon of gasoline (EIA 2022), assuming no long-run costs
to retailers.
214For ease of explanation, we use the term markup to refer to the producer profit rate. In De Loecker et al.

(2020), this term is referred to as the average profit rate while markup is used to refer to the levels of prices
relative to marginal costs (excluding capital expenditures, fixed costs, and overhead costs).
215We draw the corporate tax rate from Watson (2022). We also use that foregone tax rate estimate to adjust

the net cost of the policy. This tax rate does not vary over time. In context, the pre-tax markup on gasoline
was $0.27 per dollar spent on gas, or $0.21 per dollar spent on gas after adjusting for corporate taxes.
216Appendix C explains our approach in further detail. We start by using the EIA’s levelized cost of electricity

(LCOE) (EIA 2015). We construct the total cost per MWh at the state and national level by taking an average
of the LCOEs weighted by the share of the grid made up of each generation source. We also add transmission
and distribution costs from the EIA to the LCOE (EIA 2023a). The EIA does not report the state-specific
LCOE for each generation source. It only reports the minimum, average, and maximum. We create 50 discrete
equally spaced buckets from the minimum to maximum LCOE for each generation source and assign states to
each bucket using the BLS’s power generation industry wage index. We then compare these costs to the retail
price of electricity by year and state from the BLS (BLS 2024).
217As in the gasoline market case, we split this markup into two components: after-tax profits and government

revenue. In our baseline specification, we assume that 28% of utilities are publicly owned, that the e↵ective
corporate tax rate on private utilities is 10% (drawing from (DOT 2016)), and 100% on public utilities.
218The maximum federal subsidy was $7,500 during this period, but it was subject to manufacturer-specific
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ment an additional $0.275 for every $1 in subsidy. (The source of this estimate can be seen in
equation 10 above. We get $0.275 by multiplying the elasticity by the size of the pre-existing
subsidy as a fraction of the total price of the vehicle.) In addition to federal incentives, CA
also provided a subsidy of $9,000, which we estimate leads to a $0.414 additional cost. The
reduced gasoline consumption leads to a loss in gas tax revenue for the government of $0.041
for every $1 in subsidy.219 This is o↵set by $0.013 in additional government revenue collected
on producer profits.220 Finally, we incorporate a fiscal impact on the US government’s budget
due to the productivity reduction caused by climate change. This is equal to $0.006 for every
$1 in subsidies. Adding these costs together, we estimate a net cost of $1.711 for every $1 in
mechanical subsidy costs. When we take the ratio of the willingness-to-pay and these net costs,
we arrive at an in-context MVPF of 0.887.

The MVPF of 0.887 means that a $1 increase in net government subsidy spending in CA in
2015–2018 would have led to $0.887 in benefits for members of society.

E.4 Weatherization

Our category average MVPF for weatherization programs is 0.98 with a 95% confidence interval
of [0.93,1.04]. This appendix describes the construction of the individual MVPFs that feed into
this category average.

Weatherization programs are intended to improve the energy e�ciency of residential, com-
mercial, and industrial buildings. These programs typically involve measures such as insulation,
air sealing, HVAC system upgrades, and window and door improvements. Such programs are
implemented by governmental agencies, nonprofit organizations, and utility companies and of-
ten target low-income households. The Inflation Reduction Act includes $8.8 billion for weath-
erization programs of which approximately 50% is for whole-home energy upgrades and the
other 50% is allocated for appliance and e�cient electric technology rebates (DOE n.d.).

We create MVPFs for state-level weatherization policies implemented in Michigan, Illinois,
Arizona, Wisconsin, and Florida. Each policy focuses on di↵erent types of retrofits for house-
holds with varying baseline energy usage. We take the average treatment e↵ect on energy usage,
retrofit cost, subsidy level, and baseline energy usage from each paper. We do not harmonize
these measures across policies because we believe the papers’ treatment e↵ect is dependent on
the retrofit cost and baseline energy usage. We do, however, harmonize the externalities in
the baseline specification. Our baseline MVPFs use environmental externalities and producer
profit values corresponding to the US in 2020.

The willingness to pay for weatherization consists of the mechanical transfer to households,
environmental externality, rebound e↵ect, and e↵ect on producer profits. The total cost for
each program is the sum of the average subsidy level, fiscal externality from the change in
utility profit tax revenue, and the climate fiscal externality.

The papers in our sample do not observe the counterfactual take-up of weatherization in
the absence of weatherization subsidies. Therefore, we do not have an empirical estimate of

caps that caused the subsidy to decline as more vehicles were produced. We use a purchase-weighted average
for our main MVPF estimates, but we also consider a scenario with $7,500 subsidies.
219Total gas taxes in California were $0.54 per gallon. This is due to the federal gas tax of $0.184 per gallon

and a state gas tax of $0.36 per gallon.
220In practice, utilities make profits, some of which flow to the government while gasoline producers generate

losses. The e↵ect on utilities is larger than the e↵ect on gasoline producers.
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the share of marginal beneficiaries. Our baseline MVPF assumes that 50% of households are
marginal to the subsidy, and we present robustness to a 100% marginal assumption. For the
marginal households, some of them are convinced to take up the subsidy by the first few
dollars and some are only convinced by the last dollar. We assume a uniform distribution over
the potential threshold subsidy at which people would do the retrofit, resulting in marginal
households valuing the subsidy at 50%. Inframarginal households value the entire subsidy.
Therefore, a $1 mechanical transfer will lead to $0.50 of benefits for inframarginal households
and $0.25 for marginal households.

The externalities included in the MVPF are only from the 50% of households that are in-
duced to take up weatherization. The environmental externality is calculated as the product
of the treatment e↵ect, baseline usage, proportion of marginal households, and the monetized
environmental externality per kWh. The e↵ect on producer profits has an analogous calcula-
tion. The environmental externality per kWh in 2020 is $0.16 and the producer profit level for
electricity in 2020 is $0.01. Some weatherization programs also a↵ect natural gas usage. The ex-
ternalities for natural gas are explained in Appendix Section C.2 and result in an environmental
and producer profits externality per MMBtu of $10.25 and $4.40, respectively.

We construct both in-context MVPFs using externalities from the year and state the policy
was implemented in as well as baseline MVPFs for the US in 2020. For ease of interpretation,
the numbers referenced in each policy are in terms of the cost reported in the paper (generally
per household). To crosswalk the MVPF component numbers with those in Table 2, one can
divide each component by the mechanical spending on weatherization.

E.4.1 Weatherization Assistance Program in Michigan

Our MVPF for weatherization using estimates from Fowlie et al. (2018) is 0.92 [0.82, 1.05] in
2020 and 0.96 in-context. Fowlie et al. (2018) conducts a large-scale randomized control ex-
periment of the Weatherization Assistance Program (WAP) on 30,000 households in Michigan.
WAP is a federal program run by the US Department of Energy. It is the largest energy e�-
ciency program in the country, assisting over 7 million households since it began in 1976. WAP
does not provide funding for energy e�ciency upgrades unless it passes a cost-benefit analysis
from engineering predictions.

This paper studies energy e�ciency investments in Michigan between 2011-2014 - a period
in which WAP funding was significantly increased as a result of the American Recovery and
Reinvestment Act. All owner-occupied households at or below 200% of the poverty line were eli-
gible to apply for assistance. The most common energy upgrades included furnace replacement,
attic and wall insulation, and infiltration reduction.

The paper uses a randomized encouragement treatment in which treated households are
encouraged to apply for the weatherization program through intensive communication and
marketing. Using treatment status as an instrument, Fowlie et al. (2018) estimate the per
household energy reduction caused by the weatherization program.

The average household in the paper’s sample uses 76.68 MMBtu of natural gas and 7490.90
kWh of electricity annually. The paper’s main specification estimates that weatherization
reduces natural gas consumption by 18.9% and electricity consumption by 9.5%. This translates
into an annual 712.85 kWh and 14.52 MMBtu reduction. Fowlie et al. (2018) presents their
results for weatherization lifetimes of 10, 16, and 20 years. Our baseline MVPF uses a 20-year
lifetime. The in-context MVPF studies the policy in 2011, the first year of the paper’s sample.
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Cost The total cost is comprised of the direct program cost and fiscal externalities. Since the
MVPF measures the e↵ectiveness of the weatherization program and not the e↵ectiveness of
the encouragement nudge, the program cost does not include the cost of the encouragement
treatment. We do provide an MVPF for the encouragement nudge (0.29) explained in a forth-
coming policy appendix. Fowlie et al. (2018) find that the average cost of the energy upgrade
per household was $5,150 in 2011 dollars.

The construction of the fiscal externality from the loss in government profit tax revenue
from utility companies is explained in Appendix Section C.1 (electricity) and Appendix Section
C.2 (natural gas). The fiscal externality for electricity per kWh is $0.006 in 2020 and $0.01 in
Michigan in 2011. The fiscal externality for natural gas per MMBtu is $0.75 in 2020 and $0.52
in Michigan in 2011. Using the annual 15 MMBtu reduction in natural gas and annual 717.9
kWh reduction in electricity, discounting over the lifetime of the weatherization, we arrive at a
total fiscal externality in the US in 2020 of $108.32 and for Michigan in 2011 of $111.38.

As explained in Section 4, the climate fiscal externality is 1.9% of the global environmental
benefits. This externality reduces government cost by $29.53 in 2020 and $26.07 in-context.
The resulting total cost is $6,005.52 in the baseline and $5,235.31 in-context.

WTP The willingness to pay is comprised of the marginal and inframarginal benefits, environ-
mental externality, and loss in producer profits.

We assume that half of the beneficiaries are marginal and the other half are inframarginal.
Since we assume that inframarginal households value 100% of the subsidy and marginal house-
holds value 50% of the subsidy, the willingness to pay for the transfer is $3,862.50 in-context.
Inflation adjusting to 2020 dollars, the baseline willingness to pay is $4,445.04 or 75% of the
subsidy.

Consistent with other policy categories, we split the environmental externality into a global
and local component. The environmental externality per kWh of electricity and per MMBtu
of natural gas, and their local and global sub-components, are explained in Appendix Sections
C.1 and C.2, respectively. The resulting per-kWh environmental externality for the US in 2020
is $0.16 and for Michigan in 2011 is $0.24. While these are point-in-time estimates, we allow
the electricity grid and social costs to change over the 20 years of weatherization benefits. For
natural gas, the externalities per MMBtu are $10.25 in 2020 and $7.28 in context. Using the
annual change in energy consumption and discounting over 20 years, the global environmental
externality is $1,761.88 in 2020 and $1,575.96 in context. The local environmental externality
is $76.42 in 2020 and $291.74 in context. The rebound e↵ect o↵sets approximately 20% of
environmental benefits from electricity and 12% of the environmental benefits from natural
gas. The resulting rebound e↵ect is -$264.84 in 2020 and -$298.15 in context.

Reduced energy consumption as a result of weatherization leads to lower profits for electric
and natural gas utilities. The construction of the producer profits externality is explained in
Appendix Section C.1 (electricity) and Appendix Section C.2 (natural gas). The loss in profits
per kWh of electricity is $0.01 in 2020 and $0.02 in Michigan in 2011. The loss in profits
per MMBtu of natural gas is $4.40 in 2020 and $3.06 in Michigan in 2011. Using the annual
reduction in electricity and natural gas, discounting over the lifetime of the weatherization,
we arrive at a total producer willingness to pay of -$522.57 in the baseline specification and
-$430.26 in-context. Summing across these components, the total willingness to pay in 2020 is
$5,495.94 and in-context is $5,001.78. This results in a baseline MVPF of $0.92 and in-context
MVPF of $0.96.
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E.4.2 Home Weatherization Assistance Program in Illinois

Our MVPF for weatherization using estimates from Christensen, Francisco & Myers (2023) is
0.98 [0.96, 1.00] in 2020 and 1.05 in context. Christensen, Francisco & Myers (2023) studies
the Illinois Home Weatherization Assistance Program (IHWAP). IHWAP uses funding from the
federal Weatherization Assistance Program which provides rebates to low-income households
for dwelling upgrades (e.g., insulation, appliance replacements) and repairs aimed at boosting
energy e�ciency. Households were eligible provided their incomes were less than 200 percent
of the national poverty line. Households qualifying for other social assistance programs (e.g.,
Low Income Home Energy Assistance Program (LIHEAP), households with members receiving
Security Disability (SSD), Supplemental Security Income (SSI) or Temporary Assistance for
Needy Families (TANF)) were also eligible.

Christensen, Francisco & Myers (2023) use data from households who received upgrades
from 2018 to 2019 through IHWAP. They use an event study fixed e↵ects model to estimate
the impact of weatherization on energy usage. The paper also studies the impact of perfor-
mance incentives for contractors who are performing the weatherization. The MVPF for these
incentives is 1.07 for the high incentive and 1.06 for the low incentive. These MVPFs are further
explained in the nudge and marketing policy appendix. The IHWAP MVPF focuses exclusively
on weatherization and excludes the benefits and costs from the performance incentive.

Following the approach in Christensen, Francisco & Myers (2023), we use a 34-year lifetime
for the weatherization benefits. Our estimate of the MVPF is within the range of MVPFs
reported in the paper.221

The paper estimates the monthly change in electricity and natural gas consumption. Con-
verting these estimates to annual changes, the average household in their sample reduces annual
electricity consumption by 1656.44 kWh and annual natural gas consumption by 19.48 MMBtu.
The in-context MVPF studies the policy in 2018, the first year of the paper’s sample.

Cost The total cost is comprised of the direct program cost and fiscal externalities. Christensen,
Francisco & Myers (2023) reports that the average cost of the energy upgrade per household
was $9,655 in 2017 dollars.

The construction of the fiscal externality from the loss in government profit tax revenue
from utility companies is explained in Appendix Section C.1 (electricity) and Appendix Section
C.2 (natural gas). The fiscal externality for electricity per kWh is $0.006 in 2020 and is zero
in Illinois in 2009. The fiscal externality for natural gas per MMBtu is $0.52 in 2020 and $0.38
in Illinois in 2018. Using the annual reduction in natural gas and electricity, discounting over
the lifetime of the weatherization, we arrive at a total fiscal externality in the US in 2020 of
$259.79 and for Illinois in 2018 of $123.06.

As explained in Section 4, the climate fiscal externality is 1.9% of the global environmental
benefits. This externality reduces government costs by $68.42 in 2020 and $65.23 in context.
The resulting total cost is $10,386.98 in the baseline and $9,948.34 in context.

WTP The willingness to pay is comprised of the marginal and inframarginal benefits, environ-
mental externality, and loss in producer profits.

We assume that half of the beneficiaries are marginal and the other half are inframarginal.

221Christensen, Francisco & Myers (2023) estimate MVPFs for weatherization of 0.72, 0.95, and 1.14 corre-
sponding to SCCs of $51, $125, and $185. The main di↵erence between our calculation and theirs is that they
assume all beneficiaries are marginal and do not include a rebound e↵ect for electricity and natural gas.
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Since we assume that inframarginal households value 100% of the subsidy and marginal house-
holds value 50% of the subsidy, the willingness to pay for the transfer is $7,417.88 in-context.
Inflation adjusting to 2020 dollars, the baseline willingness to pay is $7,646.71 or 75% of the
subsidy amount.

Consistent with other policy categories, we split the environmental externality into a global
and local component. The environmental externality per kWh of electricity and per MMBtu
of natural gas, and their local and global sub-components, are explained in Appendix Sections
C.1 and C.2, respectively. The resulting per-kWh environmental externality for the US in 2020
is $0.16 and for Illinois in 2018 is $0.21. While these are point-in-time estimates, we allow
the electricity grid and social costs to change over the 34 years of weatherization benefits. For
natural gas, the externalities per MMBtu are $10.25 in 2020 and $9.51 in context. Using the
annual change in energy consumption and discounting over 34 years, the global environmental
externality is $4,119.10 in 2020 and $3,932.84 in context. The local environmental externality is
$196.86 in 2020 and $475.10 in context. The rebound e↵ect, as explained in Section D, o↵sets
approximately 20% of environmental benefits from electricity and 12% of the environmental
benefits from natural gas. The resulting rebound e↵ect is -$654.04 in 2020 and -$685.90 in
context.

Reduced energy consumption as a result of weatherization leads to lower profits for electric
and natural gas utilities. The construction of the producer profits externality is explained in
Appendix Section C.1 (electricity) and Appendix Section C.2 (natural gas). The loss in profits
per kWh of electricity is $0.01 in 2020 and zero in Illinois in 2018. The loss in profits per
MMBtu of natural gas is $4.40 in 2020 and $3.38 in Illinois in 2018. Using the annual reduction
in natural gas and electricity, discounting over the lifetime of the weatherization, we arrive at
a total producer willingness to pay of -$1,127.49 in the baseline specification and -$725.63 in
context. Summing across these components, the total willingness to pay in 2020 is $10,181.14
and in context is $10,414.29. This results in a baseline MVPF of 0.98 and an in-context MVPF
of 1.05.

E.4.3 Low-income Energy E�ciency Program in Florida

Our MVPF for weatherization using estimates from Hancevic & Sandoval (2022) is 0.86 [0.80,
0.92] in 2020 and 0.87 in context. Hancevic & Sandoval (2022) studies Gainesville, Florida’s
Low-income Energy E�ciency Program Plus (LEEP Plus). Gainesville Regional Utilities
(GRU), the fifth largest municipal electric utility company in Florida, established the LEEP
Plus in 2007. This program helps low-income households in Gainesville, Florida, with home
improvements to reduce electricity consumption. To be eligible, households must live in homes
built before 1997 and have a family income lower than 80% of the metro area’s median income.

Hancevic & Sandoval (2022) use panel data from 2012 through 2018 for households that
received an energy upgrade through GRU’s LEEP Plus. To estimate the causal impact of
participation, the paper compares treated households that received an energy upgrade to control
households that applied but were not selected to receive an upgrade. Households were untreated
for a variety of reasons such as incomplete applications and incomes above the eligible cap.
LEEP Plus focuses on retrofits that a↵ect electricity usage and the paper finds that the program
did not a↵ect natural gas. Therefore, the MVPF focuses on the treatment e↵ect on electricity
consumption.

Using household and time fixed e↵ects, the paper finds that treated households reduce
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electricity consumption relative to control households by 7.4% following the weatherization.
The average electricity usage of the households in their sample was 9,965.5 kWh per year,
implying a reduction of 706.9 kWh. The paper reports that the energy e�ciency upgrades have
a lifetime of 10-20 years. We assume a lifetime of 20 years in our MVPF calculations. The
in-context MVPF studies the policy in 2012, the first year of the paper’s sample.

Cost The total cost is comprised of the direct program cost and fiscal externalities. Hancevic
& Sandoval (2022) reports that the average cost of the energy upgrade per household was
$3,783.60 in 2018 dollars.

The construction of the fiscal externality from the loss in government profit tax revenue from
utility companies is explained in Appendix Section C.1. The fiscal externality for electricity
per kWh is $0.006 in 2020 and also $0.006 in Florida in 2012. Using the annual 706.9 kWh
reduction in electricity and discounting over the lifetime of the weatherization, we arrive at a
total fiscal externality in the US in 2020 of $28.40 and for Florida in 2012 of $26.81.

As explained in Section 4, the climate fiscal externality is 1.9% of the global environmental
benefits. This externality reduces government cost by $8.48 in 2020 and $7.54 in-context. The
resulting total cost is $3,920.24 in the baseline and $3,478.70 in-context.

WTP The willingness to pay is comprised of the marginal and inframarginal benefits, environ-
mental externality, and loss in producer profits.

We assume that half of the beneficiaries are marginal and the other half are inframarginal.
Since we assume that inframarginal households value 100% of the subsidy and marginal house-
holds value 50% of the subsidy, the willingness to pay for the transfer is $2,594.57 in-context.
Inflation adjusting to 2020 dollars, the baseline willingness to pay is $2,952.24.

Consistent with other policy categories, we split the environmental externality into a global
and local component. The local and global environmental externality per kWh of electricity is
explained in Appendix Section C.1. The resulting per-kWh environmental externality for the
US in 2020 is $0.16 and for Florida in 2012 is $0.17. While these are point-in-time estimates, we
allow the electricity grid and social costs to change over the 20 years of weatherization benefits.
Using the annual change in energy consumption and discounting over 20 years, the global
environmental externality is $539.92 in 2020 and $480.26 in context. The local environmental
externality is $75.78 in 2020 and $133.81 in context. The rebound e↵ect, as explained in
Appendix Section D, o↵sets 20% of the environmental benefits from electricity and 12% from
natural gas. The resulting rebound e↵ect is -$120.60 in 2020 and -$120.28 in context.

Reduced energy consumption as a result of weatherization leads to lower profits for electric
utilities, as explained in Appendix Section C.1. The loss in profits per kWh of electricity is
$0.01 in 2020 and $0.01 in Florida in 2012. Using the annual 706.9 kWh reduction in electricity,
discounting over the lifetime of the weatherization, we arrive at a total producer willingness
to pay of -$52.28 in the baseline specification and -$49.36 in context. Summing across these
components, the total willingness to pay in 2020 is $3,368.06 and in context is $3,039.00. This
results in a baseline MVPF of 0.86 and an in-context MVPF of 0.87.

E.4.4 Energy Retrofits in Phoenix

Our MVPF for weatherization using estimates from Liang et al. (2018) is 1.21 [0.93,1.43] in 2020
and 1.33 in-context. Liang et al. (2018) studies Energize Phoenix, a weatherization program
that targeted buildings within a 10-mile radius of downtown Phoenix, Arizona. The program
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was in operation from 2010 to 2013 and had a goal of reducing energy consumption by 30% for
residential buildings.

There were three subsidy programs for residential buildings that depended on household
income: Energy Assist 60/40, Energy Assist 100%, and Rebate Match. Since cost data is only
available for the 60/40 program, the MVPF for residential buildings is limited to this subsidy.
Households were eligible for the Energy Assist 60/40 program if they had an annual income of
less than 400% of the federal poverty level. This group received a subsidy that covers 60% of
the upgrade costs.

Liang et al. (2018) estimate the average treatment e↵ect of Energize Phoenix on residential
electricity consumption using month and household fixed e↵ects. In addition to the primary
event study design, they validate their results with a di↵erence-in-di↵erence approach that
compares treated households to those that applied for but did not receive the subsidy. They
find that the program reduces electricity consumption by 26%. The average baseline annual
electricity usage for the households in the 60/40 program before receiving energy upgrades was
14,349.60 kWh. This results in an annual reduction of approximately 3,740.39 kWh. The au-
thors do not observe natural gas data, so they do not report changes in natural gas consumption.
The in-context MVPF studies the policy in 2010, the first year of the paper’s sample.

Cost The total cost is comprised of the direct program cost and fiscal externalities. Liang
et al. (2018) reports the total retrofit cost of the program. Converting the total cost to a per
household cost and accounting for the fact that the government is only subsidizing 60% of
retrofit costs, the resulting per household subsidy is $4,333.

The construction of the fiscal externality from the loss in government profit tax revenue from
utility companies is explained in Appendix Section C.1. The fiscal externality for electricity
per kWh is $0.006 in 2020 and $0.003 in Arizona in 2010. Using the annual kWh reduction
in electricity and discounting over the lifetime of the weatherization, we arrive at a total fiscal
externality in the US in 2020 of $150.28 and for Arizona in 2010 of $79.16.

As explained in Section 4, the climate fiscal externality is 1.9% of the global environmental
benefits. This externality reduces government cost by $44.86 in 2020 and $42.92 in-context.
The resulting total cost is $4,920.16 in the baseline and $4,092.63 in-context.

WTP The willingness to pay is comprised of the marginal and inframarginal benefits, environ-
mental externality, and loss in producer profits.

We assume that half of the beneficiaries are marginal and the other half are inframarginal.
Since we assume that inframarginal households value 100% of the subsidy and marginal house-
holds value 50% of the subsidy, the willingness to pay for the transfer is $3,042.30 in-context.
Inflation adjusting to 2020 dollars, the baseline willingness to pay is $3,611.06 or 75% of the
subsidy.

Consistent with other policy categories, we split the environmental externality into a global
and local component. The local and global environmental externality per kWh of electricity is
explained in Appendix Section C.1. The resulting per-kWh environmental externality for the
US in 2020 is $0.16 and for Arizona in 2010 is $0.10. While these are point-in-time estimates,
we allow the electricity grid and social costs to change over the 20 years of weatherization
benefits. Using the annual change in energy consumption and discounting over 20 years, the
global environmental externality is $2,856.83 in 2020 and $2,733.04 in context. The local
environmental externality is $400.98 in 2020 and $430.27 in context. The rebound e↵ect, as
explained in Appendix Section D, o↵sets 20% of the environmental benefits from electricity and
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12% from natural gas. The resulting rebound e↵ect is -$638.09 in 2020 and -$619.58 in context.

Reduced energy consumption as a result of weatherization leads to lower profits for electric
utilities, as explained in Appendix Section C.1. The loss in profits per kWh of electricity is $0.01
in 2020 and $0.01 in Arizona in 2010. Using the annual 3,609.84 kWh reduction in electricity,
discounting over the lifetime of the weatherization, we arrive at a total producer willingness
to pay of -$276.64 in the baseline specification and -$145.72 in context. Summing across these
components, the total willingness to pay in 2020 is $5,954.13 and in context is $5,440.30. This
results in a baseline MVPF of 1.21 and an in-context MVPF of 1.33.

E.4.5 Weatherization Assistance Program in Wisconsin

Our MVPF for weatherization using estimates from Allcott & Greenstone (2024) is 0.92 in
2020 and 0.93 in-context. Allcott & Greenstone (2024) study two home retrofit programs in
Wisconsin: Green Madison and Milwaukee Energy E�ciency. They are both funded through
the federal Better Buildings Neighborhood Program as part of the initial 2009 economic stimulus
bill. The program took place from 2010 to 2013.

Households were randomized into two treatment groups and a control group. The treatment
group received additional subsidies for home energy audits, the first stage of the weatherization
process. Allcott & Greenstone (2024) find that while the audit subsidies increased takeup of
audits, it had a small insignificant impact on households’ decisions to invest in weatherization.
Allcott & Greenstone (2024) combine this experimental variation with observational variation
in household energy use to determine the energy savings from both the audit and retrofit stages
of the weatherization.

To construct the other weatherization MVPFs in our sample, we had to make relatively
strong assumptions about the share of marginal beneficiaries and the valuation by marginal
people. As an alternative, Allcott & Greenstone (2024) estimate a structural model of weath-
erization takeup to measure consumer surplus from the subsidy.

In their paper, Alcott and Greenstone estimate an MVPF of 0.93 using a 2020 social cost
of carbon of $190. For our in-context MVPF, we take this number directly. We harmonize
this to a 2020 national MVPF using ratios of in-context externalities (Wisconsin in 2013) to
2020 US externalities. The explanation of the construction of this MVPF will therefore focus
on the 2020 baseline MVPF. Following the approach in the paper, the cost and willingness
to pay components are normalized per household in the population rather than per program
participant.

The weatherization subsidy led to a 15% change in audit takeup and a 2% change in retrofit
investment takeup. To construct the ratio of the in-context externalities to our 2020 externali-
ties, we need to determine the percent of the environmental externality and producer profit loss
that are from electricity versus natural gas. The paper finds that the audit reduced electricity
consumption by 0.949 KWh per day and increased natural gas consumption by 0.064 therms
per day. It also finds that the weatherization investment decreased electricity consumption by
0.193 KWh per day and decreased natural gas consumption by 0.46 therms per day. Combining
this with the 15% and 2% changes in audit and investment probabilities results in a relative
weighting of 109% on electricity and -9% on natural gas.

For ease of interpretation, we will start by constructing the WTP and then construct the
Cost.
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WTP The willingness to pay is comprised of the transfer benefits, environmental externality,
and loss in producer profits.

To get the amount that beneficiaries value the transfer, we take the sum of the investment
distortion (-0.91) and consumer surplus (10.79) and inflation adjust these values from 2013 to
2020 dollars. The resulting willingness to pay is $10.98.

Consistent with other policy categories, we split the environmental externality into a global
and local component. We begin by constructing the global and local externality components
implied by the paper. The paper reports the monetized global and local externality values
they use for electricity and natural gas. They report global damages of $15.3 per MMBtu
and $0.11 per kWh. Similarly, they report $1.00 per MMBtu and $0.07 per kWh in local
damages. The total environmental externality value that feeds into their MVPF construction
is $0.87 per household. Using the 109% and -9% weights from above, we find that the implied
local and global split in the paper is $0.35 and $0.52, respectively. We can construct these
values using our 2020 baseline externality values per MMBtu of natural gas and per kWh of
electricity. The local environmental externality implied by our estimates in 2020 is 39% of
that in the paper and our global environmental externality in 2020 is 127%. Scaling these
numbers, and removing the 1.9% of the global benefits that flow to the government, results in
a local environmental externality of $0.65 and a global environmental externality of $0.14. The
rebound e↵ect, as explained in Appendix Section D, o↵sets roughly 20% of the environmental
benefits from electricity and 12% from natural gas. The resulting rebound e↵ect is $0.16.

Reduced energy consumption as a result of weatherization leads to lower profits for electric
and natural gas utilities, as explained in Appendix Sections C.1 and C.2. Following our approach
for the environmental externalities, we take their producer profit component and scale it by
the ratio of our 2020 markup to their in-context markup. The paper uses a markup of $2.75
per MMBtu of natural gas and $0.10 per kWh of electricity. Our 2020 estimates of the natural
gas markup is $4.40 and of the electricity markup is $0.01. The producer willingness to pay
component reported in the paper is 0.21. We scale this by 0.10, which is the ratio of our implied
markups to theirs. This leads to a producer willingness to pay component of $0.02.

Summing across these components, the total willingness to pay in 2020 is $11.60.

Cost The total cost is comprised of the direct program cost and fiscal externalities. For the
direct program cost, we take the paper’s reported cost per household in the population of $11.35
and inflation adjust this to 2020 dollars. This results in a cost of $12.61.

The construction of the fiscal externality from the loss in government profit tax revenue
from utility companies is explained in Appendix Section C.1. We take the total profit loss for
producers and assume that the government loses tax revenue from 72% of private utilities and
loses total profit from 28% of public utilities. Assuming a profit tax on private utilities of 10%,
this results in a fiscal externality of $0.007.

As explained in Section 4, the climate fiscal externality is 1.9% of the global environmental
benefits. This externality reduces government costs by $0.01 in 2020. The resulting total cost
is $12.61 in 2020. Dividing the WTP by the total cost, we arrive at the baseline MVPF of 0.92.

E.5 Gasoline Taxes

Gasoline taxes reduce the quantity of fuel consumed while generating revenue for the govern-
ment. The MVPF for a gasoline tax combines the price elasticity of gasoline with a measure
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of the value of the externalities generated per dollar of spending on gasoline. We form MVPFs
using 12 estimates of the price elasticity of gasoline and then harmonize the externalities (V/p)
and tax rates (⌧/p) across MVFPs in our 2020 baseline specification. We discuss di↵erences in
the in-context specification at the end of this section.

Consumers’ WTP The envelope theorem implies that consumers value the policy change
at the value of the price increase. In other words, consumers are willing to pay $1 for a $1
increase in their cost of gasoline, holding their consumption of gasoline constant. Following
Marion & Muehlegger (2011)—who use variation in changes to state-level fuel taxes to show
that suppliers fully and immediately pass gasoline and diesel taxes on to consumers—we assume
the $1 increase in the price of gas is completely passed onto consumers.

Society’s WTP In response to higher fuel prices, drivers (a) reduce the number of miles
traveled, and (b) substitute toward more fuel-e�cient (higher MPG) vehicles. Each response
reduces the total quantity of gasoline consumed. The price elasticity of gasoline (✏Gas) is the
sum of these behavioral responses. Although purchasing a more fuel-e�cient vehicle lowers the
cost of driving one mile, we need not account for increases in driving due to improved fuel
economy, as estimates of the total change in gas consumption already include this rebound
e↵ect.

Burning fewer gallons of gasoline benefits society through less global and local air pollution.
In 2020, we estimate burning one gallon of gasoline imposed $2.12 in damages from pollution;
$1.89 of these damages came from global pollutants, while the remaining $0.23 came from local
pollution. Appendix C explains how we estimate these externalities. These damages include
emissions released upstream during the oil extraction and refining processes. Using the average
retail price of gasoline for all grades and formulations reported by the EIA ($2.27 in 2020),
burning one gallon of gas imposed $0.93 of damages per dollar of spending on gas in 2020.222

Multiplying this value by the price elasticity of gasoline gives us society’s WTP for reduced
pollution. Using the price elasticity (-0.334) reported by Small & Van Dender (2007), society
was willing to pay $0.312 for a $1 increase in the gas tax rate, with $0.2777 for greenhouse gases
that contribute to global warming and $0.0339 for air pollution with adverse health e↵ects.

We scale global benefits by the share of the social cost of carbon that does not flow to the
US government as increased revenue. We assume that 50% of the social cost of carbon imposes
damages on society by a↵ecting GDP, that 15% of global benefits flow to future US residents,
and that the government imposes an e↵ective 25.54% tax on economic activity, implying that
society captures 98.08% (1 - 0.15 ⇥ 0.2554 ⇥ 0.5) of benefits from abating greenhouse gases to-
day and the US government the remaining 1.92% (�US Govt). We discuss below how to integrate

222To calculate the annual average price of gasoline, we average monthly price data from the EIA’s “U.S. All
Grades All Formulations Retail Gasoline Prices” series and weight by monthly data on the quantity of gasoline
supplied from the EIA’s “U.S. Product Supplied of Finished Motor Gasoline” series, which approximates the
total quantity of reformulated and convention gasoline consumed in a given month. We construct annual averages
rather than using the reported annual average price to account for changes in the federal gas tax rate that went
into e↵ect in specific months. Our annual averages are nearly identical to those reported by the EIA. For years
not included in the EIA’s price series (earlier than 1994), we impose on each month the average annual historic
gas price reported in the DOE’s “Historical Gasoline Prices, 1929-2011” series, although only one in-context
MVPF from our extended sample (Gas (Hughes - Ext)) requires price data from before 1994. So that each
series has the same average gas price in 1994, we calculate the di↵erence between each series’ estimate of the
1994 average price and add this di↵erence to each estimate in the earlier series. After this transformation, each
series had the same average fuel economy in 1994.
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the remaining 1.92% of global benefits into the MVPF’s denominator as increased long-run
revenue. We multiply the $0.2777 society is willing to pay to avoid global damages (calculated
using a price elasticity of -0.334) by 0.9808, resulting in a WTP for avoided greenhouse gases
of $0.2723 in 2020.

Driving fewer miles also benefits society through fewer accidents, less congestion, and re-
duced pollution (PM2.5) from tire and brake wear, which we refer to collectively as “driving
externalities.” In 2020, driving externalities imposed $2.73 of damages per gallon of gas con-
sumed, or $1.20 per dollar spent on gasoline. All driving externalities impose local damages
on society. Appendix C.3.2 explains how we calculate these externalities. Since these exter-
nalities arise per mile traveled, we care only about the decline in gasoline consumption owing
to reductions in miles traveled. Following Small & Van Dender (2007), we assume 52% of the
change in gasoline consumption arises from reduced driving. Multiplying the price elasticity
of gasoline by this parameter isolates the reduction in gasoline consumption that follows from
reduced driving. We refer to the share of the change in gasoline consumption from changes
in VMT as �. Using our 2020 driving externality estimate of $1.20 in damages per gallon of
gasoline consumed, a price elasticity of -0.334, and a � of 0.52, society was willing to pay $0.209
(-0.334 ⇥ 0.52 ⇥ $1.20) for avoided damages from driving.

Changes in fleet composition typically arise from consumers substituting toward more fuel-
e�cient gasoline-powered vehicles, but purchasing an EV allows drivers to consume fewer gal-
lons of gas while traveling the same number of miles. We account for benefits and costs from
charging more EVs.223 The cross-price elasticity between gasoline and EVs governs the amount
of substitution toward EVs due to higher gas prices. Formally, let ⌘EV, Gas represent the cross-
price elasticity between gasoline and EVs:

dQEV

dPGas
⇥ PGas

QEV
= ⌘EV, Gas (73)

We assume consumers choose between purchasing either an EV or a gas-powered vehicle. Under
this discrete choice framework, Slutsky symmetry implies that the relationship between a change
in the price of an EV and the consumption of gas-powered vehicles is identical to the relationship
between a change in the price of a gas-powered vehicle and the consumption of EVs. Moreover,
the magnitude of the shifting of consumption from gas-powered cars to EVs is equivalent in the
opposite direction to the change in own-good consumption: the increase in EV consumption is
equal in magnitude to the decrease in gas-powered vehicle consumption. We can express this
relationship as

dQEV

dPGas Car
=

dQGas Car

dPEV
(74)

dQGas Car

dPEV
=

�dQEV

dPEV
(75)

where the price of owning a gas-powered vehicle (PGas Car) is the present discounted value of

223Because the own price elasticity of gasoline measures the total change in gas consumption, we assume
the price elasticities used to construct MVPFs account for reductions in gas consumption due to consumers
switching to electric vehicles. As a result, any WTPs arising from gasoline usage (namely, gasoline producer
profits, environmental benefits of reduced gas consumption, and gas tax revenue) need not be adjusted.
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gas consumed over the vehicle’s lifetime.224 Changes in the price of gasoline enter linearly into
the price of owning a gas-powered vehicle, such that

dQEV

dPGas Car
=

dQEV

dPGas
(76)

Combining equations, Slutsky symmetry implies that the relationship between a change in the
price of gasoline and EV consumption is negatively proportional to the relationship between a
change in the price of an EV and EV consumption:

dQEV

dPGas
=

dQEV

dPGas Car
=

�dQEV

dPEV
(77)

Eq. 73 can now be expressed in terms of the own-price elasticity of EVs and the price ratio
between the present discounted value of gasoline expenses and the price of an EV.

�dQEV

dPEV
⇥ PGas

QEV
= ⌘EV, Gas (78)

(
�dQEV

dPEV
⇥ PGas

QEV
)⇥ PEV

PEV
= ⌘EV, Gas (79)

(
�dQEV

dPEV
⇥ PEV

QEV
)

| {z }
Price Elasticity of EVs (✏EV)

⇥PGas

PEV
= ⌘EV, Gas (80)

To calculate the cross-price elasticity implied by Eq. 80, we use the own price elasticity (-2.1)
estimated by Muehlegger & Rapson (2022).225 As described in Section 4, we assume an EV
displaces a cleaner-than-average gas-powered car. Fueling a vehicle with this counterfactual
fuel economy (41.2 MPG) in 2020 would cost $5,643.48 over its lifetime, using a 2% discount
rate, the average annual price of gas in 2020 ($2.27), and an average annual VMT that is 61%
of the VMT of an average car. An EV purchased in 2020 sold for, on average, $53,378.23, net of
the average subsidy in 2020 ($647.25). Together, these parameters imply a cross-price elasticity
of 0.22 in 2020.

Increased EV consumption generates environmental damages from increased electricity us-
age and dirtier manufacturing processes. The lifetime damages from EVs are expressed in
dollars per EV purchased. To convert from dollars per EV purchased to dollars of spending on
gasoline, we divide the lifetime damages from an EV by the price of gasoline and multiply by
the ratio of EV consumption to gas consumed by light-duty vehicles. We then multiply this
term by the behavioral response (the cross-price elasticity), or

224We calculate the present discounted value of gasoline consumption for a given year by holding the average
annual price of gas for that year fixed over the vehicle’s lifetime, discounting with our selected discount rate.
We assume EVs and gas-powered vehicles both remain in use for 20 years. We assume EVs and gas-powered
cars travel the same number of miles over their lifetimes.
225We need not account for the pass-through rate we apply when calculating the MVPF of an EV subsidy

using the behavioral response estimated by Muehlegger & Rapson (2022), as here we examine a change in the
gas tax rate, not a change in the EV rebate level.
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⌘EV, Gas
VEV

PGas

QEV

QGas
(81)

The average EV purchased in 2020 imposed $3,398.31 in global damages (VEV, Global) and $366.02
in local damages (VEV, Local) over its lifetime.226 In 2020, US consumers purchased 238,540
EVs, generating a total of $810.63 million and $87.31 million in global and local damages,
respectively. Dividing monetized damages from EV consumption by the product of the price of
gasoline ($2.27) and the number of gallons of gasoline consumed by light-duty vehicles in 2020
(1.127 billion) expresses the e↵ects of induced EV substitution in levels of gasoline spending:
in 2020, EVs imposed $0.003 in global damages and $0.0003 in local damages per dollar spent
on gasoline.227 Multiplying by the cross-price elasticity (0.22) then provides society’s WTP to
avoid the environmental damages associated with charging more EVs. We add these terms to
society’s WTP for the local and global benefits of reduced gasoline consumption. Accounting for
damages from EVs decreases society’s WTP for global damages by $0.0007 and local damages
by $0.00008.

Collecting the environmental benefits and damages from reduced gas usage and driving and
increased EV manufacturing and charging, society’s WTP for reduced damages from gasoline
consumption can be expressed as

WTPSociety =

✓
✏Gas

(1� �US Govt)VGas, Global

PGas
+ ⌘EV, Gas

(1� �US Govt)VEV, GlobalQEV

PGasQGas

◆

| {z }
Global Env (-$0.272)

+

✓
✏Gas

VGas, Local

PGas
+ ⌘EV, Gas

VEV, LocalQEV

PGasQGas

◆

| {z }
Local Env (-$0.034)

+ �✏Gas
VDriving

PGas| {z }
Driving (-$0.209)

(82)

Using an ✏Gas of -0.334, our 2020 values, and our preferred parameters outlined above, we
estimate a WTP for global pollution of -$0.2716 (with -$0.2723 for reduced gas consumption
and $0.0007 for increased EV usage), a WTP for local pollution of -$0.0338 (with -$0.03389
for reduced gas consumption and $0.00008 for increased EV usage), and a WTP for driving
damages of $0.209. Each term’s label corresponds to the components displayed in Figure 7.
Summing by damage type, society was willing to pay $0.2716 for global benefits (Global Env)
and $0.2427 for local benefits (Local Env + Driving) when using the price elasticity estimated
by Small & Van Dender (2007). As described below, we sign each component depending on
society’s WTP to remove the tax: society has a negative WTP to remove the tax. Within this
component, society has a negative WTP for the benefits associated with reduced gas usage and
driving but a positive WTP for the damages induced by greater EV adoption.

226As shown below, we scale VEV, Global by �US Govt to isolate society’s WTP for global benefits from the US
government’s added revenues from abating carbon today. Global damages come from EV charging and battery
production. Local damages come from EV charging alone. We account for the rebound in electricity usage due
to higher prices in both global and local damages.
227We calculate total gallons of gasoline consumed by light-duty vehicles by aggregating monthly supply data

from the EIA’s “U.S. Product Supplied of Finished Motor Gasoline” series (described above). To those annual
values, we add the total annual quantity of aviation gasoline supplied to replicate the EIA’s approach to
measuring the total quantity of gasoline consumed in a year. Lastly, we again follow the EIA by assuming that
light-duty vehicles consume 91% of all gasoline sold in a year.
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As described above, we do not calculate a rebound e↵ect for gas tax MVPFs, since estimates
of the total change in gas consumption should account for increases in VMT in response to
substitution toward more fuel-e�cient vehicles. We do not isolate this rebound in VMT. We do,
however, account for the rebound in electricity prices due to increased EV charging: a greater
number of EVs drawing from the grid increases electricity demand, resulting in higher electricity
prices and, in turn, less electricity consumption. See Section 4 for more on this calculation.
This rebound in electricity prices is accounted for and included in the environmental damages
from increased EV charging today and the dynamic environmental benefits of increased EV
consumption tomorrow.

Learning-by-Doing Benefits We augment our learning-by-doing framework to allow a
change in the gas tax rate (rather than a change in subsidy amount) to induce greater EV
adoption today.228 Specifically, let VDynamic be some benefits from future EV consumption
induced by a $1 change in the subsidy for an EV. VDynamic is calculated using an own price
elasticity of ✏EV and is measured per dollar of spending on an EV.

A change in the subsidy for an EV generates VDynamic through consumers behavioral response
to the price of an EV (✏EV ). However, we care not about a change in the subsidy amount but
rather a change in the price of gasoline. We therefore multiply VDynamic by the price of an EV
and divide by the behavioral response used to calculate VDynamic to return to dollars of benefits
per EV. From there, we can apply the same conversion used in equation (81) to move from
dollars of spending on EVs to dollars of spending on gasoline and multiply by the cross-price
elasticity to calculate society’s WTP for the learning-by-doing benefits generated by increased
EV substitution. Specifically,

⌘EV, Gas

✓
VDynamic

PEV

✏EV

QEV

QGas

◆
(83)

Put di↵erently, equation (83) scales VDynamic by the ratio of the cross-price elasticity between
EVs and gasoline to the own price elasticity of EV consumption used to calculate these benefits
and converts from dollars of spending on EVs to dollars of spending on gasoline. VDynamic

includes both the environmental and price benefits from learning-by-doing. In 2020, society was
willing to pay $0.002 for future EV price reductions and less than $0.001 for the environmental
benefits from learning-by-doing.229

228We do not consider substitution toward EVs for in-context MVPFs calculated for years before 2011.
229For the price benefits, we take the $0.368 of learning-by-doing benefits calculated using a price elasticity of -

2.1, multiply by the ratio of behavioral responses (0.22/-2.1), and multiply again by the ratio of spending on EVs
to spending on gasoline (0.05). This yields a -$0.0019 learning-by-doing price benefit per dollar of spending on
gasoline. We do the same for the learning-by-doing environmental benefits ($0.042 in global benefits and $0.006
in local benefits), which yields a learning-by-doing environmental benefit of $0.00025 per dollar of spending on
gasoline.
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WTPLBD = ⌘EV, Gas
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| {z }
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(84)

Like the components associated with substitution toward EV, these learning-by-doing benefits
are common across all gas tax MVPFs calculated in 2020, as our derived cross-price elasticity
is independent of the own-price elasticity of gasoline unique to each MVPF calculation.

Producers’ WTP Imperfect competition among suppliers in three markets results in a
markup on gasoline that is above the economy-wide average markup. We account for pro-
ducers’ WTP for lost profits resulting from reduced gasoline consumption. We also account for
utilities’ WTP for increased EV charging.

First, crude suppliers sell oil to refiners at a price (refiner acquisition cost) above the landed
cost of producing a barrel of crude, both reported by the EIA (EIA 2024d,b). In 2020, moving
one barrel of crude oil from well to refinery cost $37.27 on average, while refiners purchased
this barrel for, on average, $40. We use the refinery yield (1 barrel of crude produces how many
gallons of refined product) to convert barrels of crude to gallons of consumable petroleum prod-
uct. This conversion allocates profits (as well as upstream emissions) to downstream products
in proportion to the quantity produced. We set the per-gallon markup to $0 if the di↵erence
between the landed cost and selling price of crude is negative.230 In 2020, the average markup
imposed by crude producers equaled $0.06 per gallon or 2.5% of the price of gasoline.

Second, the EIA reports that 17.7% of the price of a gallon of gasoline arises from refining
costs and profits, not including costs from crude production passed onto refiners (EIA 2024a).
Favennec (2022) estimates that new refineries face a variable cost of $10 per barrel of crude
processed but notes that this cost could fall between $3 and $5 per barrel once capital invest-
ments fully depreciate. Combining the EIA’s estimate of the share of the price of gas owing
to refining costs and profits with a $4 ($10) refining cost, we calculate a per-gallon markup of
$0.32 ($0.20) in 2020, or 14% (9%) of the price of gas. We use a $4 cost of refining as our
baseline specification.231

Third, we consider markups imposed by distributors, who purchase gasoline from refiners at
the dealer tank wagon price and sell to consumers at the retail price of gasoline, both measured
on a per-gallon basis. The markup from distributors is the di↵erence between these prices.
In 2020, distributors purchased gasoline from refineries at $1.86 per gallon and sold the same
gallon to consumers for $2.27, implying a per-gallon markup of $0.41 per gallon, or 18% of the
per-gallon price of gasoline. We assume distributors face no variable costs other than the cost
of purchasing refined gasoline.232

230No monthly data reported a negative markup in 2020, and negative markups appear intermittently after
January 1983.
231Neither approach results in a negative markup in any period.
232This approach generates a negative markup for one month in our data (October 2019). We set markups to
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Summing each producer’s markup yields a total per-gallon markup equal to 35% of the price
of gasoline. We subtract from this gasoline markup the average, economy-wide markup (8%)
estimated by De Loecker et al. (2020), resulting in a 27% average markup on a gallon of gas.
In 2020, the total markup on gasoline was $0.61 per gallon, which we adjust by the corporate
average tax rate (21%) to account for the share of profits producers keep (Watson 2022).233

This results in a post-tax externality borne by producers of $0.21 per dollar of spending on
gasoline. With a price elasticity of -0.334, producers were willing to pay $0.071 in 2020 for the
policy change.

To account for utilities’ WTP, we perform the same calculations described above to move
from WTP per EV to WTP per dollar of spending on gasoline. In 2020, the average EV
generated $265.56 in post-tax profits for utilities over its lifetime. From the 238,540 EVs
purchased in 2020, utilities would earn a total of $63.35 million over these vehicles’ lifetimes.234

Dividing by total spending on gasoline in 2020 (1.127 billion times $2.27 per gallon) denotes
utility profits in dollars of spending on gasoline, and multiplying by the cross-price elasticity
yields utilities’ WTP for a $1 increase in the gas tax rate. In 2020, utilities were WTP -$0.00005
for the policy change. We sign this component as a negative since utilities are WTP to keep
the policy change.

Producers’ total WTP can be expressed as

WTPProducers = ✏Gas
(1� ⌧Corp, Gas)µGas

PGas| {z }
Gasoline Producers ($0.071)

+ ⌘EV, Gas
(1� ⌧Corp, Utilities)µEVQEV

PGasQGas| {z }
Utilities (-$0.00005)

(85)

where µ is the pre-tax profit the producer earns per unit of good sold, and ⌧Corp, is the e↵ective
corporate tax rate producers face. Each term’s label corresponds to the components included
in Figure 7. In 2020, gasoline producers were WTP $0.071 for the policy change, and utilities
-$0.00005.

Total WTP Summing across components, a $1 change in the gas tax rate results in a total
WTP of $0.555 when using a price elasticity of gasoline of -0.334. Consumers ($1) and producers
($0.071) are both willing to pay to avoid the tax increase, while society (-$0.515) and future
consumers (-$0.002) are willing to pay to keep the tax increase. We sign each component
depending on the group’s willingness to pay to remove the tax. Consumers and producers are
both willing to pay to remove the tax since these groups are made worse o↵ through higher prices
and reduced profits, respectively. On the other hand, society is willing to pay to keep the tax on
the books, as they are made better o↵ through reduced environmental and driving externalities.
Future consumers also have a negative willingness to pay to remove the tax, although these
future consumers’ WTP does not o↵set contemporary consumers’ WTP to avoid higher gas
prices. As described below, removing a tax also allows us to treat both taxes and subsidies as
having a $1 mechanical cost.

$0 if this approach yields a negative markup.
233We do not vary across time the e↵ective corporate tax rate gasoline producers face.
234We hold the price of electricity in 2020 constant over the vehicle’s lifetime and discount using our preferred

discount rate of 2%.
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Cost A $1 increase in the gas tax rate mechanically raises $1 of revenue for the government.
However, the accompanying decrease in gas consumption reduces the amount of revenue the
government collects by the size of the behavioral response times the tax collected per dollar of
gasoline spending. In 2020, the federal gas tax rate was $0.184 per gallon (FHWA 2022b) while
the average state tax on gasoline (weighted by gross gallons of gasoline taxed) was $0.281 per
gallon (FHWA 2022a, 2020). Accounting for federal and state gas taxes, the government col-
lected $0.20 per dollar spent on gas. Multiplying by a price elasticity of -0.334, the government
faced a $0.068 loss in revenue from decreased gasoline consumption.

We also account for four other fiscal externalities that impact the revenue raised from a $1
change in the gas tax rate. Decreases in producer profits reduce government revenue in the form
of lost corporate taxes (assuming a 21% tax rate). The pre-tax markup on gasoline was $0.27
per dollar of gas spending in 2020, meaning the government collected $0.06 in corporate tax
revenue for each dollar spent on gas.235 With the price elasticity (-0.334) estimated by Small
& Van Dender (2007), we calculate a $0.019 fiscal externality from lost corporate tax revenue.

Second, public and private utilities generate revenue for the government, meaning substitu-
tion toward EVs should increase revenue collected through increased vehicle charging. Charging
the average EV purchased in 2020 generated $144.25 in profits for private utilities over the vehi-
cle’s lifetime ($34.41 million across the lifetimes of all EVs sold in 2020), or $0.0001 per dollar of
spending on gasoline. Applying the cross-price elasticity yields a fiscal externality of $0.00003
from increased revenue collected from utilities. Through this component, the government raises
revenue by inducing substitution toward EVs.

Third, EVs qualified for $647.25 in federal and state subsidies in 2020 ($154.4 million across
all EVs sold in 2020). Applying the same transformation described above, the federal govern-
ment lost $0.0006 in revenue per dollar spent on gasoline, implying a fiscal externality of $0.0001
from increased spending on EV subsidies after applying a cross-price elasticity of 0.22. Through
this component, the government loses revenue by having to subsidize more EV purchases.

Lastly, abating greenhouse gas emissions through a gas tax raises revenue for the govern-
ment in the long run. When calculating society’s WTP for global pollution benefits, we scale
the WTP component by the share of global benefits that do not flow to the US government as
revenue (98.1%). We put the remaining 1.92% in the denominator. With a price elasticity of
-0.334, society’s WTP in 2020 for all global benefits was $0.2777, implying the government gen-
erated $0.005 ($0.2777 ⇥ 0.0192) in revenue by abating carbon emissions today and promoting
economic output tomorrow.236 Abating carbon emissions generates a positive fiscal externality,
as the US government generates additional revenue through the policy change.

Summing the mechanical $1 of revenue raised and the five fiscal externalities, we obtain a
total “cost” of $0.918 when using a price elasticity of -0.334: a $1 increase in the gas tax rate
raises $0.918 in revenue for the government.237 Collecting the mechanical revenue raised and
the fiscal externalities, we can express the denominator of the MVPF as

235We assume all gasoline producer profits are subject to the American tax schedule but note that the geo-
graphic variation in crude oil production could render our calculation of this fiscal externality an overestimate.
236This total WTP for global damages includes global benefits and damages from EV substitution and learning-

by-doing.
237To match our approach with subsidies, we again consider the e↵ects of removing the gasoline tax: this

would mechanically lower revenue by $1 but would positively impact government revenue by increasing gas
consumption. This allows us to treat both taxes and subsidies as having a $1 mechanical cost.
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Each component is labeled using the corresponding label from Figure 7. Dividing the total WTP
calculated above ($0.555) by the total cost ($0.918), both calculated with a price elasticity of
-0.334, we form an MVPF of 0.604 in 2020.

The following paragraphs explain how each paper in our sample estimates the price elasticity
of gasoline and how we form MVPFs using each paper’s estimate. All papers in our sample
estimate an elasticity (rather than a semi-elasticity). For all estimates, we evaluate the policy
change at the national level. Our baseline estimate focuses on 2020, and our in-context estimates
are set in the last year within each paper’s sample.

State-level Gas Price Variation (Small & Van Dender 2007)
Small & Van Dender (2007) use variation in state-level fuel prices between 1997 and 2001 to
estimate a long-run own price elasticity of gasoline of -0.3340 (s.e. 0.0451). The authors’ Table 5
(Column 2, Row 7) reports this elasticity. We construct two MVPFs: one using our harmonized
2020 parameters, and another in the context of 2001.

In 2020, consumers were WTP $1 for a $1 increase in the gas tax rate. Society was WTP
for reduced greenhouse gases (-$0.272), reduced local air pollution ($0.034), and reduced driv-
ing externalities ($0.209), all calculated by dividing the per-gallon externality by the price of
gasoline in 2020 ($2.27) and multiplying by the price elasticity of -0.3340. Society’s WTPs
for global and local pollution are inclusive of added damages from increased EV charging and
manufacturing. Learning-by-doing generated a WTP by future consumers of $0.002 and added
environmental benefits of less than $0.001. Gasoline producers are willing to pay $0.071 for lost
profits, and utilities less than -$0.001 for increased profits. Summing these components yields
a total WTP of $0.555 for the policy change in 2020.

A $1 increase in the gas tax rate raised the government $0.918 in 2020. In addition to
the $1 of revenue mechanically raised, the government lost $0.087 in tax revenue ($0.068 from
lost gas tax revenue, $0.019 from lost corporate tax revenue collected from gas producers, and
less than $0.001 gained from utility profits). The government also spent an additional $0.0001
in EV subsidies and raised $0.005 by abating carbon emissions. Combining the mechanical
revenue raised with the fiscal externalities, a $1 increase in the gas tax rate generated $0.918
in government revenue in 2020.

With a price elasticity of -0.334, dividing the total WTP of $0.555 by the total cost of $0.918
yields an MVPF of 0.604 in 2020.

In 2001, the nominal gas price was $1.47. Society was WTP -$0.187 for reduced greenhouse
gases, -$0.127 for reduced local air pollution, and -$0.194 for reduced driving externalities. We
do account for EV substitution for years before 2011. Producers were WTP $0.102 for the
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policy change. Summing consumers’, producers’, and society’s WTPs yields a total WTP of
$0.595. A $1 increase in the gas tax costs the government $0.085 in lost gas tax revenue and
$0.027 in lost corporate tax revenue. The policy change also earned the government $0.004 in
revenue from abated greenhouse gases, for a total cost of $0.891. Dividing total WTP by total
cost results in an MVPF of 0.668 in the context (2001) in which the authors estimated the price
elasticity of gasoline.
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F Publication Bias

In this section, we provide more details on our procedure to estimate and correct for publication
bias in the environmental economics literature. Our approach follows that outlined in Andrews
& Kasy (2019), with some modifications that relax the assumptions required for identifying the
degree of publication bias in our data.

F.1 Estimating Publication Bias

We first form a dataset of the t-statistics for the studies underlying our estimates.238 We restrict
attention to our baseline sample and drop all observations for which there are no reported
measures of sampling uncertainty. Our focus is on the literature measuring elasticities and
semi-elasticities of climate-relevant outcomes with respect to various policies. To that end, we
drop estimates of pass-throughs and markups, which we view as ancillary to the main objects
of interest. This yields a final sample of 93 distinct estimates with t-statistics.

Appendix Figure 10 provides heuristic evidence of the presence of publication bias in our
sample. Here, we show a scatterplot of the standard errors for the studies in our sample
against the corresponding point estimates. The dashed gray lines indicate slopes of -1/1.96
and 1/1.96; data points above these lines are insignificant (assuming a conventional 5% cuto↵),
while those below are significant. This “funnelplot” shows substantial excess mass below the
dashed lines. Assuming, as in Andrews & Kasy (2019), that standard errors and point estimates
would be uncorrelated in the absence of publication bias, this o↵ers suggestive evidence that
conventionally significant estimates are more likely to be published.

While this o↵ers evidence of the presence of publication bias, to correct for the distortions
such biases induce, we require an estimate of the degree of publication bias. We do so via a
regression-discontinuity-like design, comparing publication probabilities below and above the
1.96 cuto↵.239 Panel B of Appendix Figure 10 visualizes our procedure. We form bins of t-stats
of width .98 and count the number of published studies in each bin; our estimate of publication
bias is given by the ratio of the number of studies in the bin [1.96, 2.94) relative to the number
in the bin [.98, 1.96). This yields a ratio of 2.200 (p-value for the null hypothesis that the
ratio is 1: < .0001). Assuming that the underlying distribution of t-statistics is smooth in the
neighborhood of the cuto↵, this corresponds to the odds ratio of publication for significant vs
insignificant studies.240

238Most papers in our sample report point estimates and standard errors or t-statistics directly. Some papers
report p-values only; for these, we invert the p-value assuming 95% two-sided normal hypothesis tests to yield
the corresponding t-statistics.
239Here, we conduct our analysis using the absolute value of the t-statistics. In addition to increasing statistical

power, the signs in our baseline sample are often arbitrary (e.g., some demand elasticities are reported as
negative; others are reported as positive and are implicitly understood to be absolute values). Moreover, Panel
A of Appendix Figure 10 shows approximate symmetry around 0, suggesting that ignoring the signs of the
estimates sacrifices little information.
240While our baseline binning of .98 is relatively large, we obtain similar results for smaller bins, e.g., .49 and

.28.
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F.1.1 Comparison with Andrews & Kasy (2019) Method

Our approach to estimating publication bias di↵ers slightly from the methodology proposed
in Andrews & Kasy (2019). While their paper o↵ers non-parametric identification results,
in practice they estimate publication bias by specifying (1) a parametric hyperdistribution of
the true e↵ect sizes and (2) regions of di↵erent publication probabilities, corresponding to t-
stats above or below conventional significance levels. By assuming a functional form for the
hyperdistribution (e.g., Gaussian, T-), this approach imposes more assumptions, whereas our
method imposes only the nonparametric requirement that the distribution of true e↵ect sizes
is continuous at the threshold between regions.241

Appendix Figure 11 presents the implied CDFs from our method and from that of Andrews
& Kasy (2019), both compared to the empirical CDF of the (absolute value of the) t-stats in
our data. Two important patterns stand out. First, except for the kink around a t-statistic
of 2, the empirical CDF is relatively smooth in the regions below and above this cuto↵. This
suggests that focusing on the region local to the 1.96 cuto↵ allows us to capture the main
source of publication bias in our sample without imposing parametric restrictions on the true
e↵ects. Second, the parametric approach from Andrews & Kasy (2019) appears to significantly
overestimate the jump in publication probabilities around the cuto↵, leading to a much steeper
kink in the CDF than is observed in the data. Intuition for this result lies in the fact that the
minimal t-statistic in our sample is roughly .5, implying a large degree of missing mass in the
region [0, .5). Since the approach in Andrews & Kasy (2019) imposes full support priors (e.g.,
Gaussian), a very high degree of publication bias is necessary to rationalize this “empty” region.
In contrast, our local estimator around the t stat of 1.96 threshold does not infer publication
bias from the extent of mass in the region between 0 and 0.5.

F.2 Correcting for Publication Bias

Armed with estimates of the degree of publication bias, we can use the approach in Andrews
& Kasy (2019) to correct our data for the distortions such bias induces. They consider a setup
in which a researcher observes a draw from a distribution centered at the true e↵ect size but
with some noise given by the study’s standard error. The draw is then published with possibly
di↵erent probabilities depending on whether or not it is significant. In this setting, they show
the studies’ standard errors and the estimates of publication bias allow for median-unbiased
estimation of the true e↵ects. In other words, we can compute the true e↵ect size such that the
published study is at the 50th percentile of the implied distribution of published e↵ects.

Appendix Figure 12 shows the results of applying this bias-correction procedure to our
raw estimates and re-creating the MVPFs in our baseline sample. It shows that our core
conclusions remain una↵ected by correcting our estimates: wind policies continue to dominate
solar policies, which outperform the other subsidies in the sample. While these patterns emerge
with the relatively modest degree of publication bias we find in our approach, applying the bias
correction with higher degrees of estimated bias (e.g., using the approach in Andrews & Kasy
(2019)) similarly preserves our main conclusions.

241Their approach allows for estimating publication bias over the entire range of the data, whereas ours forces
us to focus on the region local to the cuto↵.
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G Regulation

Our primary results focus on the welfare benefits and costs of taxes and subsidies that a↵ect
greenhouse gas emissions. The MVPF approach is particularly well suited to analyze policies of
this sort – policies with direct statutory impacts on the government’s budget. Alternatively, one
could seek to reduce emissions via changes in regulations. While regulations can have an impact
on the government budget (e.g., a reduction in gasoline usage can reduce gas taxes collected),
the impact on the government is often small. Instead, the key welfare e↵ect regulation policy
is the tradeo↵ it induces across multiple groups of beneficiaries. For example, improvements
in fuel standards may reduce emissions but car owners may need to pay more for cars under
stricter fuel economy standards.242

While it is not particularly informative to construct an MVPF corresponding to a change in
regulation policy, the MVPF framework can still be used to examine the welfare consequences of
these policies. This approach requires a di↵erent conceptual experiment than the one outlined in
equation (6). Here, we recall the original ideas of Kaldor (1939) and Hicks (1940) who suggested
we can use combinations of policies to neutralize distributional incidence when making policy
comparisons. Kaldor and Hicks envisioned individual-specific lump-sum transfers to create
these policy combinations. The MVPF framework, as outlined in Hendren (2020), allows us to
extend this idea to consider feasible policy tools to neutralize this incidence.

The key question here is whether the environmental benefits obtained through regulation
could be obtained more e�ciency through taxes and subsidies. For example, can a combination
of tax and spend policies be used to replicate the distributional incidence of regulation across
all groups of beneficiaries?

In this Appendix, we present a detailed description of the results from this exercise compar-
ing gas taxes and income taxes to CAFE standards using estimates from Leard & McConnell
(2017), Anderson & Sallee (2011), and Jacobsen (2013a). We then present a comparison of
Wind PTCs to Renewable Portfolio Standards (RPS), which require utility companies to source
a certain fraction of their energy from clean sources.

G.1 Corporate Average Fuel Economy Standards (CAFE)

Corporate Average Fuel Economy (CAFE) standards have been an important method for reg-
ulating vehicle emissions in the US. These standards require automakers selling light-duty
vehicles of a given model year in the US to meet specified fleet-wide average fuel economy
ratings (typically stated in terms of miles per gallon). We show how to relate our results on
the MVPF of the gas tax to results from papers estimating the costs and benefits of changes
in the stringency of CAFE standards.

We begin by combining estimates of the costs of CAFE standards from Leard & McConnell
(2017) with our calculations of the lifetime damages generated by the average new light-duty
vehicle sold in 2020. Since 2012, vehicle manufacturers who over-comply with CAFE standards
receive credits. Over-compliant firms can use these credits to cover under-compliant vehicles
they manufacture over the next five years (or to retroactively cover vehicles from the previous

242In practice, one can still construct the MVPF of this policy. The net cost of the policy is determined by
the change in gas tax revenue. The WTP is determined by the sum of the e↵ects on consumers and global
beneficiaries of emissions reductions.
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three years that fell short of standards) or to o↵set under-compliant models (so that the firm’s
vehicles average out to the CAFE standard).243 Additionally, over-compliant firms can sell
credits to under-compliant firms; in a competitive market, the price at which credits are traded
reveals the marginal cost of compliance with CAFE standards. While firms are not required
to disclose credit prices, Leard & McConnell (2017) infer prices using SEC filings from Tesla,
finding an average credit price between $70 and $119 (in 2014 dollars). We use an adjusted
average credit price of $99.22 (in 2020 dollars) to calculate the marginal cost of compliance and
assume the entire cost is passed onto consumers through higher vehicle prices.244

For benefits and costs proportional to fuel use, we calculate the di↵erence in costs/benefits
generated by the average new light-duty vehicle released in 2020 (25.38 MPG) and a new vehicle
with a 1 MPG higher (26.38 MPG) fuel economy. This approach compares the average light-
duty vehicle purchased in 2020 to a vehicle that achieved an additional mile per gallon burned,
or a 3.9% more fuel-e�cient vehicle.245 We account for the rebound in miles traveled by the
more fuel-e�cient vehicle by multiplying the percent-change in the cost of driving one mile by
the elasticity of VMT with respect to the cost of driving from Small & Van Dender (2007)
(-0.2221).246 This approach to calculating the benefits of CAFE standards assumes the size of
the vehicle fleet remains constant while the fleet’s composition changes.

Recall that Appendix Figure 6, Panel A illustrates the costs and benefits of increased CAFE
standards. Every $1 of environmental benefits leads to a cost on producers of $0.34 and a cost
on consumers of $0.32. Additionally, lost gas and corporate tax revenue generates a cost to
the government of $0.39. This implies that more stringent CAFE regulation that creates $1
of environmental benefits delivers an unweighted sum of net benefits to society of $0.34. The
question we now ask is rooted in the classic e�ciency tests of Kaldor (1939) and Hicks (1940):
Can we do better than this for the a↵ected groups by finding a combination of gasoline taxes
and income taxes that generate at least (a) $1 of environmental benefits, (b) -$0.34 in producer
benefits, and (c) -$0.32 in consumer benefits at a cost to the government that is less than
$0.39? In other words, can taxes replicate the distributional incidence of the CAFE standards
at a lower cost to the government (so that the excess revenue could be redistributed to make
everyone better o↵)?247

243As Leard & McConnell (2017) explain, credits lower costs by allowing firms to over-comply when manufac-
turing vehicles with lower marginal costs (such as cars) and under-comply with higher marginal cost vehicles
(such as light-duty trucks). Credits also allow firms to smooth costs over time.
244Leard & McConnell (2017) first calculate an implied credit price in terms of dollars per ton of CO2 (author’s

Table 4), which the authors convert to dollars per mile-per-gallon since carbon emissions are proportional to
fuel use. We apply three transformations to harmonize our analysis of CAFE standards with similar policies.
First, we take a simple average of the three permit prices ($70, $119, and $80) inferred by the authors. Although
the marginal cost of compliance is likely to rise as CAFE standards tighten further, we do not have enough
information to estimate how credit prices change as compliance becomes more di�cult. Second, we re-scale by
the lifetime VMT of our estimated counterfactual vehicle (197,592 miles/author’s reported 195,264 miles) to
harmonize with the parameters used to calculate lifetime damages. Lastly, we inflation adjust to 2020 dollars,
yielding a credit price of $99.22 in 2020 dollars.
245For example, while a new light-duty vehicle manufactured and purchased in 2020 generated $16,858.56

in global damages over its lifetime, a new light-duty vehicle with a 1 MPG higher fuel economy generated
$15,923.97 in global damages ($15,923.97 divided by 1.039), before accounting for the rebound in VMT.
246We calculate the cost of driving one mile by dividing the cost of a gallon of gas ($2.27 in 2020) by the

vehicle’s fuel economy. We then calculate the percent change in the cost of driving relative to the average new
light-duty vehicle released in 2020. Multiplying the percent-change in the cost of driving by the elasticity of
VMT with respect to the cost of driving (-0.2221) yields a rebound in VMT of 0.84%. The positive rebound
implies that VMT increases as vehicles become more fuel-e�cient and the cost of driving one mile falls.
247This test of “e�ciency” dates back to the classic definition of Kaldor (1939) and Hicks (1940) with the
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To assess this, the orange bars in Appendix Figure 6, Panel A show that every $1 of
environmental benefits provided by the gas tax generates a cost to producers of $0.14 and
a cost to consumers of $2.25. The tax also generates $2.09 in government revenue. Next, we
combine the gas tax with a tax on producers of $0.20 to equalize their willingness to pay under
the tax regime as in the CAFE expansion (-$0.34). We assume the MVPF of taxes on producers
is 1.8, consistent with estimates of the MVPF of taxes on top earners from Hendren & Sprung-
Keyser (2020). This suggests imposing the $0.20 cost on producers raises $0.11 (=.20/1.8) in
revenue for the government. We present this in the second column of Appendix Figure 6, Panel
B. Next, we compensate the consumers for the di↵erence between their losses under CAFE
versus the gas tax, $1.93. The MVPF of raising revenue from the average consumer is around
1.2, suggesting that this costs the government $1.61 (=$1.93/1.2), which we present in the
third column of Appendix Figure 6, Panel B. Therefore, the net cost to the government of
the gas taxes plus income taxes that replicate CAFE is �$0.60 = �2.09 � 0.11 + 1.61. On
net, Appendix Figure 6, Panel B shows that the government can replicate the distributional
incidence of CAFE using taxes and still run a $0.60 surplus, in contrast to the $0.39 deficit
that CAFE generates. In other words, it is $0.99 cheaper for the government to generate the
$1 of environmental benefits through taxes instead of CAFE. In this sense, although CAFE
generates a positive net surplus, our estimates would suggest that the gas tax is more e�cient
than CAFE at delivering those environmental benefits because one can redistribute back the
$0.99 in a way that would make each group better o↵.

Appendix Figure 7 present results for two other analyses of the costs and benefits of CAFE:
Anderson & Sallee (2011) (Panel A) and Jacobsen (2013a) (Panel B). We present the benefits
and costs of the regulation in blue and the tax in orange.248 The blue bar on the far right
replicates the analysis above by constructing the net cost to the government of replicating
CAFE using taxes and transfers. Using each of these estimates of the welfare impact of CAFE,
our estimates imply that taxes can replicate the CAFE benefits at a surplus to the government,
in contrast to CAFE, which imposes a net cost to the government. In this sense, our MVPF
results imply gasoline taxes are more e�cient than CAFE in delivering environmental benefits
through reduced gasoline consumption. In theory, two potential mechanisms could be driving
this result. First, CAFE imposes implicit taxes on fleet characteristics beyond purely a tax on
gasoline emissions (see Ito & Sallee (2018)). These additional taxes impose distortions that are
partially orthogonal to the e↵orts to simply reduce gasoline consumption. Second, gas taxes
reduce vehicle miles traveled which leads to reductions in accidents and congestion – benefits
that are not achieved through CAFE regulation. A deep analysis of the theoretical mechanisms
driving the results is beyond our scope; rather, we simply note that the empirical results suggest

modification that we use actual tax and transfer policies instead of lump-sum redistribution to neutralize
distributional incidence.
248To evaluate Anderson & Sallee (2011), we repeat the exercise described above but substitute the credit

price from Leard & McConnell (2017) with the marginal cost of compliance estimated by the authors. We take
the midpoint of the 6 ranges reported in Table 8 of Anderson & Sallee (2011), take simple averages for cars
and trucks, and calculate a single weighted cost of compliance using the 2020 car and truck production shares
(0.44 and 0.56, respectively) reported in the Automotive Trends Report (EPA 2023b). For Jacobsen (2013a),
we take the per-household estimates (reported in the author’s Table 6) of the e↵ects of a 1 MPG increment in
CAFE standards on producer welfare, consumer welfare, gallons of gasoline used, and vehicle miles traveled;
multiply by the number of households in the author’s sample (20,429); and value the change in the total change
in gasoline and the total change in VMT using the average per-gallon ($2.12 per gallon) and per-mile ($0.118
per mile) externalities we calculate in Appendix C. Although we typically assume that CAFE standards increase
VMT, excluding the author’s estimated reduction in VMT would only reinforce our conclusion that gas taxes
are more e�cient than CAFE standards.
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a superiority of gas taxes over CAFE standards.

G.2 Renewable Portfolio Standards (RPS)

Next, we consider the relative e�ciency of wind subsidies compared with the Renewable Port-
folio Standards (RPS) regulation. These regulations, generally passed by states, require power
companies to source a certain percentage of their energy from clean sources like wind and solar.
Here, we use estimates from Greenstone & Nath (2020), who study the causal e↵ect of these
state-level standards. They find that every ton of carbon removed from the atmosphere leads
to a reduction of consumer surplus between $58-$298. We use the lower bound ($58) of the
authors’ reported cost per ton estimates, as our ultimate conclusion will be robust to assuming
RPS imposes larger welfare costs on consumers. In addition, because the $58 estimate from
Greenstone & Nath (2020) does not include learning-by-doing benefits or local pollution bene-
fits, we harmonize our estimates to theirs by excluding these components when considering the
wind PTC impacts. For global environmental benefits, we use our baseline $193 SCC, but since
these are the only environmental benefits the results would be unchanged with other values of
the SCC.

The results suggest that every $1 of environmental benefits provided by RPS imposes a
cost on consumers of $0.31 and a $0.02 savings to the government due to the climate fiscal
externality, which are displayed in Appendix Figure 7, Panel C.249 In contrast, delivering $1
of environmental benefits through wind PTC subsidies delivers $0.27 in benefits to consumers
and costs the government $0.37. Producers have no willingness to pay for either policy. Income
taxes that tax consumers enough to impose the same $0.31 cost that RPS imposes on them
would generate $0.48 in revenue. This means one could construct a combined wind PTC and
income tax regime that delivers $1 of environmental benefits and $0.31 in costs to consumers,
but that generates $0.12 in government revenue (in contrast to the $0.02 from RPS). In this
sense, the estimates suggest that wind subsidies are more e�cient than RPS regulation.

In summary, these examples illustrate how the library of MVPFs we provide can readily
be incorporated into welfare analyses of regulations to help assess the relative e�ciency of
regulation versus combinations of taxes and subsidies. For the estimates of the e↵ects of CAFE
and RPS, our results suggest tax and transfer policies are more e�cient than regulation. That
is, there is the potential to make all a↵ected groups better o↵ with tax and subsidy policies
than with the specific regulatory alternative being assessed.

249We follow Greenstone & Nath (2020) and assume all costs associated with RPS are passed on to consumers.
We also assume the wind PTC is passed on to consumers as lower electricity prices.
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H Comparison to Net Benefits and Benefit-Cost Ratios

In critiquing cost-e↵ectiveness ratios, we follow a large literature discussing the advantages of
benefit-cost analysis over cost-e↵ectiveness analysis because of its more comprehensive nature.
In addition to the MVPF, the two most common alternative metrics in cost-benefit analysis
are (a) the net benefits of a policy and (b) the benefit-cost ratio of a policy. We briefly discuss
these metrics and explain the advantage of our focus on constructing the MVPF.

Net benefits of a policy change equal the di↵erence between the total benefits provided and
the total costs. This contrasts with our MVPF approach which focuses on the ratio of net
benefits to individuals divided by the net government cost. The key idea behind the MVPF
framework is that we can construct budget-neutral policy experiments for the decision-maker
by comparing any two MVPFs. For example, if one policy costs the government one dollar and
another raises revenue of one dollar, the two policies can be combined using their respective
MVPFs to yield an expression for net benefits (it would equal the sum of the two MVPFs in
this case). By constructing such budget-neutral policy experiments, MVPFs can be used to
construct a benefit-cost analysis representing the sum of willingness to pay across all individuals.

The ratio used to construct an MVPF is related to a large literature discussing the pros and
cons of benefit-cost ratios. Benefit-cost ratios are often criticized because it is not conceptually
clear what constitutes a cost in the denominator versus a negative benefit in the numerator
(Boardman et al. 2018). The MVPF solves this conundrum by being clear about the incidence
of the policy: the government incidence is in the denominator; the beneficiaries of the policy
are in the numerator. By making the ratio correspond to the incidence of well-defined groups,
we remove any indeterminacy around measurement. Moreover, from the perspective of a pol-
icymaker seeking to maximize social welfare subject to a government budget constraint, the
MVPF has a Lagrange multiplier interpretation: it helps characterize the extent to which social
welfare can be increased per dollar of net government spending on a policy. In this sense, the
MVPF is a key statistic for attempting to optimize policy choices.

In contrast to the MVPF, a more traditional benefit-cost ratio might place the net benefits
to the government in the numerator relative to upfront government costs in the denominator
(Heckman et al. 2010). Because the fiscal externalities are broadly quite small relative to
programmatic cost, our conclusions would be similar if one were to use such a benefit-cost ratio
for the analysis. While the results are similar, the clear conceptual advantage of the MVPF
approach is that it does not require making assumptions about how the budget constraint is
closed. As a result, the welfare conclusions do not depend on (often opaque) assumptions about
the deadweight loss of income taxation or the ”marginal cost of public funds”. This enables
researchers to compare the desirability of wind PTC subsidies to spending on education, without
worrying about the MCPF assumptions embedded in welfare analyses of the PTC and education
studies. It also allows researchers to consider raising revenue from a gas tax instead of an income
tax - indeed, rarely does one talk about the benefit-cost ratio of a gas tax. Instead, the MVPF
provides a unified way of thinking about tax and spending policies. In doing so, it also provides
a transparent method of incorporating preferences for equity in equation (6). An MVPF of 6
for wind PTCs vs. 1.5 for an income tax means we prefer the wind PTC if we want to give $6
to its beneficiaries (roughly $4 flows overseas but 2 goes to US residents).

223



I Resource Cost per Ton

This appendix describes our approach to calculating the cost per ton for each policy in our
sample. Because government cost per ton and net social cost per ton use the same inputs as
the MVPFs, we defer readers to those appendices for details on the inputs for those calculations
(and we provide a brief discussion at the end of this section on how we construct the government
and net social cost per ton).

For most policies, the formula for resource cost follows: Di↵erence in Sticker Prices +
Di↵erence in Use Costs where sticker prices are the upfront costs paid for vehicles or appliances
for example and use costs are often the payments for fuels needed to power the item. In the
following subsections, we detail the calculations for each specific policy or a general policy
category when possible.

I.1 Electric Vehicles

The resource cost is calculated as the di↵erence in buying and fueling a battery electric vehicle
(BEV) versus buying and fueling an internal combustion engine vehicle (ICEV). The di↵erence
in the price of a BEV in 2020 versus an ICEV comes from Vincentric’s 2024 Electric Vehicle
Cost of Ownership Analysis and is reported to be $8,166 for 2023 models. Adjusting to 2020
dollars, we have $6,937.08.

The cost of fueling a BEV is calculated as the present discounted value of the VMT in each
year multiplied by the 2020 kWh per mile (0.29) multiplied by the average levelized cost of
electricity (LCOE) ($0.074/kWh) (details for calculating the LCOE can be found in Appendix
C.1). This adds up to $2,216. The cost of fueling an ICEV is, similarly, the PDV of the
VMT in each year multiplied by the counterfactual mpg (41.23) in 2020 multiplied by the retail
gasoline price ($2.27) minus the gasoline tax ($0.46) and markups ($0.79). In total, this implies
a lifetime gasoline cost of $2,519. Overall, the resource cost for a battery electric vehicle is
$6,634.

To calculate the tons of carbon abated by purchasing a BEV, we take the carbon emissions
from the ICEV lifetime gas consumption and subtract the carbon emissions from the BEV
lifetime electricity consumption as well as the emissions from the production of BEV batteries.
Details on the calculation of emissions from gasoline and the electricity grid can be found in
Appendices C.3 and C.1, respectively. For ICEVs, we have 28.38 tons and for BEVs, we have
16.66 tons. The emissions from battery production are 59.5 kg per kWh of battery capacity.
The average 2020 BEV battery capacity is 73 kWh. Thus, we have 4.34 tons of carbon from
batteries. Overall, the tons of carbon abated from purchasing a BEV is 6.89 tons.

Taking the resource cost and dividing it by the tons of carbon, we have a resource cost per
ton of $900.06.

I.2 Wind

For wind, we use utility-scale natural gas as the counterfactual since in 2021 it was the main
source of new capacity to the grid coming from fossil fuels. The natural gas LCOE in 2020
is $0.05/kWh and the wind one is $0.033. The resource cost is simply the di↵erence between
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these two LCOEs, which is -$0.0167.

The carbon amount is emissions from one kWh of natural gas minus the emissions from one
kWh of wind energy. For natural gas, this is 0.0004074 tons and for wind, this is 0.000011.
Thus, we have 0.0003964 tons of carbon abated per kWh of wind energy. Our final resource
cost per ton number is -$42.24.

I.3 Solar

Since all of the solar policies we analyze regard residential solar, we use the average energy
mix from the grid as our counterfactual, meaning we use the $0.074/kWh average LCOE as in
the BEV calculations. For the cost of a kWh of residential solar, we use the average cost per
Watt number from the National Renewable Energy Laboratory which is $2.77 after adjusting
the value to 2020$. To convert this to a per kWh value, we divide it by the average lifetime of
a solar system (25 years) and the average annual output from one Watt (1.44 kWh) This gives
us a per-kWh cost of $0.0769. Thus, our resource cost is $0.00291.

The carbon amount is emissions from one kWh of electricity from the grid using AVERT’s
model of the makeup of the grid that solar replaces minus the emissions from 1 kWh of solar
electricity. The grid emissions are 0.0006968 and the solar emissions are 0.00004, which leaves
us with 0.0006568 tons of carbon abated per kWh of solar electricity. Thus, our resource cost
per ton number is $4.43 per ton

I.4 Appliance Rebates

For appliance rebates, the papers in our sample find varying reductions in energy usage when
consumers move from non-Energy Star to Energy Star (ES) appliances. Thus, we calculate the
resource cost per ton separately for each policy. In general, we calculate the resource cost as
the sticker price minus the energy savings.

I.4.1 Cash for Appliances - Clothes Washers

To estimate the energy savings from purchasing an ES-rated clothes washer, we use the authors’
reported di↵erence between an ES and non-ES-rated clothes washer in 2010 as 201 kWh per
year. We use this number for the kWh reduction in years 6-15 of the clothes washer’s lifetime.
For years 1-5, we compare the 2010 ES-rated clothes washer with a 2001 non-ES-rated clothes
washer. The paper does not directly report this number. It does report the ratio of the rebate
amount to the total lifetime reduction. Using this ratio, we calculate the kWh di↵erence for
the first five years of the ES-rated appliance to be 668 kWh per year. Taking the present
discounted value of this energy consumption multiplied by the average LCOE ($0.074/kWh),
we get a lifetime energy cost savings of $432.25.

The sticker price comes from Table 3 of Houde and Aldy (2017), which reports an ES
manufacturer’s suggested retail price of $1,033 and a non-ES price of $643. Taking the di↵erence
and inflation adjusting to 2020$ (we assume the values are in 2011$), we get $448.82. Thus,
the resource cost is $16.57.

Using the same kWh numbers from above, we estimate the carbon abated from the 5,350
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kWh saved over the clothes washer’s lifetime using AVERT’s reported marginal emissions co-
e�cients and get 3.903 tons. Thus the resource cost per ton is $4.24.

I.4.2 State-level ENERGY STAR Rebate - Clothes Washers

To estimate the energy savings we use the kWh di↵erence from Houde and Aldy (2017) of 201
kWh since this value is estimated closer to 2020 than the one reported by Datta and Gulati
(2014). Using the same 15-year lifespan, we have an energy savings of $194.94. We use the
same sticker price of $448.82 from above, so the resource cost is $253.88

For carbon, we have 3,015 kWh of electricity saved over the lifetime, which produces 1.49
tons of carbon. Thus, the resource cost per ton is $169.92.

I.4.3 ENERGY STAR Rebate - Water Heaters

To estimate the energy savings we take the EIA’s estimate for an average natural gas water
heater in a four-person household of 22.7 MMBtu of natural gas (EIA 2018). An Energy Star
water heater uses 8% less energy than a standard model (ENERGY STAR 2023). Therefore,
we estimate that an ES-rated water heater saves 1.816 MMBtu per year. Consistent with the
other appliance rebate MVPFs in our sample, we assume a lifetime of 15 years. Using the
average Citygate price for natural gas in 2020 of $3.56 per MMBtu, the lifetime energy savings
is $84.74.

The sticker price di↵erence is calculated using the values in Table 1 and computing a
weighted average across the four models within the standard and Energy Star categories. The
average non-ES price is $520.10 and the average ES price is $862.75. Taking the di↵erence and
converting from 2012$ to 2020$, we have $386.32, giving us a resource cost of $301.58.

For the carbon abated, we have the 27.24 MMBtu of natural gas saved multiplied by the
emissions from one MMBtu of 0.0531 (from the EPA) to get 1.45 tons of carbon. Thus, the
resource cost per ton is $208.

I.4.4 Cash for Appliances - Dishwashers

To estimate the energy savings from purchasing an ES-rated dishwasher, we use the authors’
reported di↵erence between an ES and a non-ES-rated dish washer in 2010 as 34 kWh per year.
We use this number for the kWh reduction in years 6-15 of the dishwasher’s lifetime. For years
1-5, we compare the 2010 ES-rated clothes washer with a 2001 non-ES-rated clothes washer.
The paper does not directly report this number. It does report the ratio of the rebate amount
to the total lifetime reduction. Using this ratio, we calculate the kWh di↵erence for the first five
years of the ES-rated appliance to be 234.5 kWh per year. Taking the present discounted value
of this energy consumption multiplied by the average LCOE ($0.074/kWh), we get a lifetime
energy cost savings of $98.03.

The sticker price comes from Table 3 of Houde and Aldy (2017), which reports an ES
manufacturer’s suggested retail price of $764 and a non-ES price of $624. Taking the di↵erence
and inflation adjusting to 2020$ (we assume the values are in 2011$), we get $161.12. Thus,
the resource cost is $63.08.
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Using the same kWh numbers from above, we estimate the carbon abated from the 1,512.5
kWh saved over the dishwasher’s lifetime using AVERT’s reported marginal emissions coe�-
cients and get 0.91 tons. Thus, the resource cost per ton is $69.08.

I.4.5 Cash for Appliances - Refrigerators

To estimate the energy savings from purchasing an ES-rated refrigerator, we use the authors’
reported di↵erence between an ES and a non-ES-rated refrigerator in 2010 as 65 kWh per year.
We use this number for the kWh reduction in years 6-15 of the refrigerator’s lifetime. For years
1-5, we compare the 2010 ES-rated refrigerator with a 2001 non-ES-rated refrigerator. The
paper does not directly report this number. It does report the ratio of the rebate amount to
the total lifetime reduction. Using this ratio, we calculate the kWh di↵erence for the first five
years of the ES-rated appliance to be 207.6 kWh per year. Taking the present discounted value
of this energy consumption multiplied by the average LCOE ($0.074/kWh), we get a lifetime
energy cost savings of $113.78.

The sticker price comes from Table 3 of Houde and Aldy (2017), which reports an ES
manufacturer’s suggested retail price of $1,778 and a non-ES price of $1,938. Taking the
di↵erence and inflation adjusting to 2020$ (we assume the values are in 2011$), we get -$184.13.
Thus, the resource cost is -$297.92.

Using the same kWh numbers from above, we estimate the carbon abated from the 1,688
kWh saved over the fridge’s lifetime using AVERT’s reported marginal emissions coe�cients
and get 0.998 tons. Thus, the resource cost per ton is -$298.42.

I.4.6 State-level ENERGY STAR Rebate - Refrigerators

To estimate the energy savings we use the kWh di↵erence from Houde and Aldy (2017) of 65
kWh per year since this value is estimated closer to 2020 than the one reported in Datta and
Gulati (2014). Using the same 15-year lifespan, we have an energy savings of $63.04. We use
the same sticker price of -$184.13 from above, so the resource cost is -$247.18.

For carbon, we have 975 kWh of electricity saved over the lifetime, which produces 0.48
tons of carbon. Thus, the resource cost per ton is -$511.56.

I.4.7 State-level ENERGY STAR Rebate - Dishwashers

To estimate the energy savings we use the kWh di↵erence from Houde and Aldy (2017) of 34
kWh per year since this value is estimated closer to 2020 than the one reported in Datta and
Gulati (2014). Using the same 15-year lifespan, we have an energy savings of $32.98. We use
the same sticker price of $161.12 from above, so the resource cost is $128.14.

For carbon, we have 510 kWh of electricity saved over the lifetime, which produces 0.25
tons of carbon. Thus, the resource cost per ton is $507.02.

I.4.8 California Energy Savings Assistance Program - Refrigerators

Blonz (2019) finds that 3,715 replacements were for qualified refrigerators compared to 1,261 for
unqualified refrigerators. Therefore, about 75% of the replacements were for qualified fridges.
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The paper also finds that the people who qualified accelerated their replacement decisions by
five years and those who should not have qualified accelerated their replacement decisions by
six years. During this window, the paper estimates that the qualified refrigerators saved 73.45
kWh per month and the unqualified refrigerators saved 38.02 kWh per month. Since the paper
estimates the average change in purchase timing across all the beneficiaries, we assume that
everyone is marginal to the policy and changes their decision by either 5 or 6 years depending
on whether they should have qualified for the replacement. Consistent with the other appliance
rebate policies, we assume that these appliances have a 15-year lifetime. Taking the present
discounted value of this energy consumption multiplied by the average LCOE ($0.074/kWh),
we get a lifetime energy cost savings of $290.59.

The sticker price comes from Table 3 of Houde and Aldy (2017), which reports an ES
manufacturer’s suggested retail price of $1,778 and a non-ES price of $1,938. Taking the
di↵erence and inflation adjusting to 2020$ (we assume the values are in 2011$), we get -$184.13.
Thus, the resource cost is -$474.72.

Using the same kWh numbers from above, we estimate the carbon abated from the 3,984
kWh saved over the fridge’s lifetime using AVERT’s reported marginal emissions coe�cients
and get 2.94 tons. Thus, the resource cost per ton is -$161.69.

I.5 Vehicle Retirement

Similarly to appliance rebates, we estimate the resource cost per ton separately for each vehicle
retirement policy.

I.5.1 Cash for Clunkers (Li, Linn, and Spiller 2013)

Li, Linn, and Spiller (2013) find that the “Cash-for-Clunkers” policy had two e↵ects: accelerat-
ing the purchase of a new car and shifting the new car to have a higher fuel economy than the
consumer would have otherwise purchased. This creates three sources of resource cost: a leasing
cost to quantify the acceleration of the purchase, an accounting of the cost of the increased mpg
using the marginal cost of compliance for CAFE standards, and gas savings over the lifetime
of the new car due to its higher mpg.

We calculate a weighted average of new and used vehicle prices in 2020 to use in the esti-
mate of the leasing cost. According to CarGurus, the average used car price was $27,409 and
according to KBB, the average new car price was $39,592. Using sales numbers from Statista,
this gives a weighted average of$30,643. The leasing cost is the interest over the two months of
acceleration. We use a 3% interest rate and get a leasing cost of $153.21.

The cost of the increased mpg is the marginal cost of compliance, $89.67 per mpg, multiplied
by the di↵erence in the new car’s mpg and its counterfactual mpg, which is 0.24. Thus the cost
is $23.52.

Lastly, using the retail gasoline price net of the gasoline tax and markups as in the BEV
calculations, the 0.24 mpg di↵erence, and the lifetime of the vehicle, the present discounted
value of the gas savings between the new car and its counterfactual is $83.15. Thus, the
resource cost is $93.58.

The carbon number is the emissions saved from that di↵erence in fuel economy over the
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lifetime of the car (see Appendix C.3 for details on the estimation of driving emissions), which
is 0.92 tons. The resource cost per ton is $101.56.

I.5.2 BAAQMD Vehicle Buyback Program

Sandler (2012) finds that the vehicle buyback program accelerated the purchase of a new car.
This creates two sources of resource cost: a leasing cost to quantify the acceleration of the
purchase and gas savings over the acceleration period due to the higher mpg of the new car
compared to the retired car.

We calculate a weighted average of new and used vehicle prices in 2020 to use in the esti-
mate of the leasing cost. According to CarGurus, the average used car price was $27,409 and
according to KBB, the average new car price was $39,592. Using sales numbers from Statista,
this gives a weighted average of$30,643. The leasing cost is the interest over the 3.8 years of
acceleration. We use a 3% interest rate and get a leasing cost of $3,511.

Using the retail gasoline price net of the gasoline tax and markups as in the BEV calcula-
tions, the 2.68 mpg di↵erence, and the 3.8-year acceleration, the present discounted value of
the gas savings between the new car and the retired car is $89.79. Thus, the resource cost is
$3,310.

The carbon number is the emissions saved from that di↵erence in fuel economy over the 3.8
years (see Appendix C.3 for details on the estimation of driving emissions), which is 1.26 tons.
The resource cost per ton is $2,625.

I.5.3 Cash for Clunkers (Hoekstra, Puller, and West 2017)

Hoekstra, Puller, and West (2017) find that the “Cash-for-Clunkers” policy had two e↵ects:
accelerating the purchase of a new car and shifting the new car to have a higher fuel economy
than the consumer would have otherwise purchased. This creates three sources of resource
cost: a leasing cost to quantify the acceleration of the purchase, an accounting of the cost of
the increased mpg using the marginal cost of compliance for CAFE standards, and gas savings
over the lifetime of the new car due to its higher mpg.

We calculate a weighted average of new and used vehicle prices in 2020 to use in the esti-
mate of the leasing cost. According to CarGurus, the average used car price was $27,409 and
according to KBB, the average new car price was $39,592. Using sales numbers from Statista,
this gives a weighted average of $30,643. The leasing cost is the interest over the eight months
of acceleration. We use a 3% interest rate and get a leasing cost of $612.85.

The cost of the increased mpg is the marginal cost of compliance, $89.67 per mpg (inflation-
adjusted from 2014$ to 2020$), multiplied by the di↵erence in the new car’s mpg and its
counterfactual’s, which is 3.57. Thus the cost is $350.

Lastly, using the retail gasoline price net of the gasoline tax and markups as in the BEV
calculations, the 3.57 mpg di↵erence, and the lifetime of the vehicle, the present discounted
value of the gas savings between the new car and its counterfactual is $1,082. Thus, the
resource cost is -$119.65.

The carbon number is the emissions saved from that di↵erence in fuel economy over the
lifetime of the car (see Appendix C.3 for details on the estimation of driving emissions), which
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is 11.99 tons. The resource cost per ton is -$9.98.

I.6 Weatherization

For each weatherization policy, the resource cost per ton is the cost of the retrofits minus the
energy savings all divided by the tons of carbon abated.

I.6.1 Energize Phoenix Program - Residential Buildings

Liang et al. (2018) found that the program reduces electricity consumption by 26%. The
average baseline annual electricity usage for the 24 households before the energy upgrades was
14,350 kWh. This results in an annual reduction of approximately 3,740 kWh. Using the
average LCOE of $0.074 and assuming a weatherization lifetime of 20 years, the energy savings
from the program are $110,793.

The sticker price is the total spending from the program inflation-adjusted to 2020$, $192,590,
so the resource cost is $81,797.

Using the same kWh numbers from above, we estimate the carbon abated from the 1,795,200
kWh saved by the 24 households over the weatherization’s lifetime using AVERT’s reported
marginal emissions coe�cients and get 735 tons. Thus, the resource cost per ton is $111.34.

I.6.2 Michigan Weatherization Assistance Program

The average household in the paper’s sample uses 79.44 MMBtu of natural gas and 7,543.65
kWh of electricity annually. The paper’s main specification estimates that weatherization
reduces natural gas consumption by 18.9% and electricity consumption by 9.5%. This translates
into an annual 713 kWh and 14.5 MMBtu reduction. Given a 20-year lifetime, the average
LCOE, and the Citygate natural gas price, the lifetime energy savings are $1,742.

The sticker price is the total spending from the program inflation-adjusted to 2020$, $5,928,
so the resource cost is $4,184.

Using the same kWh and MMBtu numbers from above, we estimate the carbon abated
from the 14,260 kWh and 290 MMBtu saved over the weatherization’s lifetime using AVERT’s
reported marginal emissions coe�cients for the grid and the EPA’s emissions estimates and get
21.3 tons. Thus, the resource cost per ton is $196.84.

I.6.3 Illinois Home Weatherization Assistance Program

The paper estimates the average treatment e↵ect of IHWAP on the monthly change in electric-
ity and natural gas consumption. Converting these estimates to annual changes, the average
household in their sample reduces annual electricity consumption by 1,656 kWh and annual
natural gas consumption by 19.48 MMBtu. Given a 34-year lifetime, the average LCOE, and
the Citygate natural gas price, the lifetime energy savings are $4,796.

The sticker price is the total spending from the program inflation-adjusted to 2020$, $10,196,
so the resource cost is $5,400.
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Using the same kWh and MMBtu numbers from above, we estimate the carbon abated form
the 56,304 kWh and 662.3 MMBtu saved over the weatherization’s lifetime using AVERT’s
reported marginal emissions coe�cients for the grid and the EPA’s emissions estimates for
natural gas and get 53.5 tons. Thus, the resource cost per ton is $100.89.

I.6.4 Gainesville Regional Utility LEEP Plus Program

Using household and time fixed e↵ects, the paper finds that treated households reduce elec-
tricity consumption relative to control households by 7.1% following the weatherization. The
average electricity usage of the households in their sample was 9,965.5 kWh per year, implying
a reduction of 706.9 kWh. Using a 20-year lifetime and the average LCOE, the lifetime energy
savings are $872.

The sticker price is the total spending from the program inflation-adjusted to 2020$, $3,900,
so the resource cost is $3,028.

Using the same kWh number from above, we estimate the carbon abated from the 14,138
kWh saved over the weatherization’s lifetime using AVERT’s reported marginal emissions co-
e�cients for the grid and get 5.79 tons. Thus, the resource cost per ton is $523.

I.6.5 Wisconsin Energy E�ciency Retrofit Program

Using a randomized experiment and a structural model to evaluate two home energy retrofit
programs, the paper finds that treated households reduced electricity consumption relative
to control households by 1.142 kWh per day and reduced natural gas consumption by 0.396
MMBtu following the weatherization. Using a 20-year lifetime, the average LCOE, and the
Citygate natural gas price, the lifetime energy savings are $1,373.

The sticker price is the total spending from the program inflation-adjusted to 2020$, $2,096,
so the resource cost is $723.

Using the same kWh and MMBtu numbers from above, we estimate the carbon abated from
the 8,336.6 kWh and 2,890.8 MMBtu saved over the weatherization’s lifetime using AVERT’s
reported marginal emissions coe�cients for the grid and the EPA’s emissions estimates for
natural gas and get 18.76 tons. Thus, the resource cost per ton is $38.53.

I.7 Hybrid Vehicles

The resource cost is calculated as the di↵erence in buying and fueling a hybrid electric vehicle
(BEV) versus buying and fueling an internal combustion engine vehicle (ICEV). The prices of
an HEV and an ICE in 2020 according to KBB are $28,359 and $27,012, respectively, so the
di↵erence is $1,347.

The cost of fueling an HEV is calculated as the present discounted value of the VMT in
each year multiplied by the 2020 average HEV fuel economy (42.52) multiplied by the retail
gasoline price ($2.27) minus the gasoline tax ($0.46) and markups ($0.79). This adds up to
$4,008. The cost of fueling an ICEV is, similarly, the PDV of the VMT in each year multiplied
by the counterfactual mpg (40.62) in 2020 multiplied by the same gasoline cost. In total, this
implies a lifetime gasoline cost of $4,154. Overall, the resource cost for a hybrid electric vehicle
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is $1,200.

To calculate the tons of carbon abated by purchasing a HEV, we take the carbon emissions
from the ICEV lifetime gas consumption and subtract the carbon emissions from the HEV
lifetime gasoline consumption as well as the emissions from the production of HEV batteries.
Details on the calculation of emissions from gasoline can be found in Appendix C.3. For ICEVs,
we have 46 tons and for HEVs, we have 44 tons. The emissions from battery production are
234 kg per battery. Thus, we have 0.234 tons of carbon from batteries. Overall, the tons of
carbon abated from purchasing an HEV is 1.82 tons.

Taking the resource cost and dividing it by the tons of carbon, we have a resource cost per
ton of $659.

I.8 Home Energy Reports

For home energy reports, the papers in our sample find varying reductions in energy usage
when consumers receive a report. Thus, we calculate the resource cost per ton separately for
each policy. In general, we calculate the resource cost as the sticker price minus the energy
savings.

I.8.1 Home Energy Reports (17 RCTs)

Across the 17 RCTs in this sample, the weighted average energy reduction is 243.26 kWh per
household. Using the average LCOE, the energy savings are $18. The Home Energy Report
program costs $8.83 per household on average, so the resource cost is -$9.17.

Taking the 243.26 kWh and the marginal emissions coe�cients from AVERT, the carbon
abated per household is 0.1806 tons. Thus, the resource cost per ton is -$50.76.

I.8.2 Opower Natural Gas Program Evaluations (52 RCTs)

Across the 52 RCTs in this sample, the weighted average natural gas reduction is 0.9416 MMBtu
per household. Using the Citygate natural gas price, the energy savings are $3.35. The Home
Energy Report program costs $9.96 per household on average, so the resource cost is $6.61.

Taking the 0.9416 MMBtu and the emissions rate for natural gas from the EPA, the carbon
abated per household is 0.05 tons. Thus, the resource cost per ton is $132.

I.8.3 Peak Energy Reports

In this experiment, the average electricity reduction from receiving a PER is 0.1235 kWh.
Assuming the LCOE at peak energy usage is $1 per kWh, the energy savings are $0.12. Each
PER costs $0.10, so the resource cost is -$0.02.

Taking the 0.1235 kWh and assuming any energy reduction at peak usage is saving coal
from being burned, the carbon abated per household is 0.0001213 tons. Thus, the resource cost
per ton is -$193.71.
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I.8.4 Opower Electricity Program Evaluations (166 RCTs)

Across the 166 RCTs in this sample, the weighted average electricity reduction is 161 kWh per
household. Using the average LCOE, the energy savings are $11.89. The Home Energy Report
program costs $6.96 per household on average, so the resource cost is -$4.93.

Taking the 161 kWh and the marginal emissions coe�cients from AVERT, the carbon abated
per household is 0.1194 tons. Thus, the resource cost per ton is -$41.33.

I.9 Gasoline Taxes

For gasoline taxes, the resource cost is simply the retail gas price net of markups and taxes,
which is $1.02 per gallon. This is a savings though, so it is negative for our calculations. The
carbon emissions from one gallon of gasoline are 0.009779 (details can be found in Appendix
C.3). Thus, the resource cost per ton is -$103.80.

I.10 Other Fuel Taxes

I.10.1 Tax on Jet Fuel

For a jet fuel tax, the resource cost is simply the retail jet fuel price net of markups and taxes,
which is $0.49 per gallon. This is a savings though, so it is negative for our calculations. The
carbon emissions from one gallon of jet fuel are 0.01085. Thus, the resource cost per ton is
-$45.55.

I.10.2 Tax on Diesel Fuel

For a diesel tax, the resource cost is simply the retail diesel price net of markups and taxes,
which is $1.12 per gallon. This is a savings though, so it is negative for our calculations. The
carbon emissions from one gallon of diesel are 0.01133. Thus, the resource cost per ton is
-$98.54.

I.11 Other Revenue Raisers

I.11.1 Critical Peak Pricing - Passive Joiners

At peak energy demand we assume the LCOE is $1 per kWh, so we take that as our resource
cost. We also assume that at peak energy demand, the marginal kWh of electricity is coming
from coal. One kWh of electricity produced solely with coal emits 0.0009823 tons of carbon.
Thus, the resource cost per ton is -$1,018.

I.11.2 California Alternate Rates for Energy

The resource cost is simply the citygate price for one MMBtu of natural gas, which is $3.56.
This is a savings though, so it is negative for our calculations. The carbon from one MMBtu is
0.0531 tons. Thus, the resource cost per ton is -$67.06.

233



I.11.3 Critical Peak Pricing - Active Joiners

At peak energy demand we assume the LCOE is $1 per kWh, so we take that as our resource
cost. We also assume that at peak energy demand, the marginal kWh of electricity is coming
from coal. One kWh of electricity produced solely with coal emits 0.0009823 tons of carbon.
Thus, the resource cost per ton is -$1,018.

I.12 Accounting for Learning by Doing in Resource Cost per Ton

All of the calculations above have assumed that there are no learning-by-doing e↵ects. Here we
discuss the accounting of those for wind, solar, BEVs, and HEVs within a resource cost-per-ton
framework.

Recall that our model of learning-by-doing looks at the e↵ect of $1 in mechanical subsidy on
future prices of the object of interest. For example, the CEFMP policy leads to a dynamic price
component of 0.309. This can be interpreted as a 31-cent reduction in future BEV prices for
every dollar of subsidy. To use this e↵ect in the resource cost per ton calculations, we convert
to a per vehicle (or per other object for other programs) unit by dividing the component by the
semi-elasticity and pass-through rate if relevant. For CEFMP, the semi-elasticity is 0.00003924
and the pass-through rate is 85%, so the per vehicle component is $9,264. Since this is a future
benefit, we subtract it from the existing resource cost estimate (which for BEVs was $6,634) to
get -$2,630.

Nothing changes with the carbon estimate when we add in learning-by-doing, so the new
resource cost per ton number is -$378.72. The other learning-by-doing policies follow the same
steps to account for the dynamic price e↵ect.

I.13 Government Cost per Ton

As discussed in the main text, the government cost per ton measures the reduction in tons of
CO2 emitted per each dollar of net government outlay. The construction of the government
cost per ton uses all of the same inputs as the MVPF, so we defer readers to the detailed
appendix for the MVPF construction of each policy for information on how the numbers are
constructed. Relative to the MVPF, it uses the denominator of the MVPF in its numerator
(the net government cost of the policy) and compares this to the tons of carbon abated from
the policy. To calculate the government cost per ton we take the Total Cost (see Table 2) of
a policy and divide it by the sum of Global Environmental Benefits and the global portion of
the Rebound E↵ect (including any portion captured by the climate FE) and divided by the
social cost of carbon. While this doesn’t account for the discount rate or the rising social cost
of carbon, it is approximately equal to the tons of carbon from the policy.

If we are including the e↵ect of learning by doing, then the denominator will be calculated
by also including the global portion of the Learning by Doing Environmental Benefit.

I.14 Net Social Cost per Ton

Net social cost per ton is calculated as the ratio of the net government cost minus all of the
non-CO2-related benefits of the policy and the abated tons of CO2. The construction of the net
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social cost per ton uses all of the same inputs as the MVPF, so we defer readers to the detailed
appendix for the MVPF construction of each policy for information on how the numbers are
constructed. The abated tons of carbon are calculated in the same way as for government cost
per ton. For the numerator though, we take the Total Cost (again see Table 2) and subtract the
Transfer, Profits, Local Environmental Benefits, and the local portion of the Rebound E↵ect.

If we are including the e↵ect of learning by doing, then the numerator is calculated by also
subtracting the Learning by Doing Price benefit. Again, the denominator is calculated in the
exact same way as for government cost per ton.
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J Federal Energy Policy over the last 15 years

There have been two main pieces of federal legislation over the last 15 years than have guided
US energy policy: The American Recovery and Reinvestment Act (ARRA) enacted in 2009 and
the Inflation Reduction Act (IRA), enacted in 2022. Here, we compare the relative spending
in each Act for renewables, energy e�ciency, and EVs.

J.1 ARRA

The aim of ARRA was to stimulate the economy following the Great Recession, which ma-
jor objective being to create jobs, promote investment in infrastructure, and foster consumer
spending. The energy component of ARRA aimed to modernize the energy sector, enhance
energy e�ciency, and promote renewable energy sources. Here, we break down the allocation
of funding as part of the ARRA.

We draw the breakdown of funds in the ARRA from Table 1 from CEA (2016). We report
values in 2009 prices, unless otherwise stated.

The CEA reports that anticipated ARRA spending was $90 Billion and that total spending
was $105 billion.

We conservatively estimate that the ARRA spent $49.8 billion on renewable technologies.
This includes the $26.6 billion that the CEA designated as renewable generation. That figure
includes wind and solar production tax credits (PTCs) and investment tax credits (ITCs), as
well as the 1603 Cash Grant program for renewables. To that $26.6 billion we add $3.5 billion for
the Green Innovation & Job Training, $3.4 billion for Carbon capture and Sequestration and $2
billion for the State Energy Plan.250 The CEA (2016) also stated that total spending exceeded
projected spending by $15 billion. They cite the 1603 Cash Grant program and the clean energy
manufacturing tax credit as sources of this cost overrun. In order to be conservative in our
calculations, we assume that the full $15 billion was allocated toward clean energy, although
this is certainly an over-estimate. We also allocate a portion of Section 25 spending to the clean
energy category. The program was dominated by Section 25C, which was focused on household
energy e�ciency, but we use estimates from the JCT to estimate the relative spending on
Section 25C versus Section 25D (renewable generation) (Brown & Sherlock 2011). Assuming
that 10% of total Section 25 spending went to clean energy, increases the total spending on
clean energy by another $1 billion.

We estimate that ARRA spending on energy e�ciency spending was $16.9 billion, of which
was made up by weatherization, energy e�ciency and conservation block grants, the energy
e�ciency tax credits of 25C, and state energy plan (CEA 2016, Goldman 2011).251

The remaining portion of ARRA spending is as follows: Transit had the next largest amount
of investment, with $18.1 billion. This was focused more on infrastructure, such as high-speed
rail, but not on EVs. Next was grid modernization at $10.5 billion, which focused on making
the grid more e�cient, with a great deal of spending on smart meters and technology (not
renewables). Spending on advanced vehicles was $6.1 billion, which focused on EV and battery

250We omit the Clean Energy Equipment Manufacturing $1.6 bn line item from renewable generation. This is
consistent with our omission of advanced manufacturing spending for this calculation in the IRA
251While the CEA estimates this category as $19.9 billion, we subtract $2 billion, one for SEP and $1 billion

for section 25D tax credits.
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subsidies.

Given these numbers, we calculate that subsidies (both grants and tax credits) for clean
renewable energy were about 3 times those for energy e�ciency. Subsidies for clean energy and
energy e�ciency were 8.2 times and 2.8 times larger the spending on EVs, respectively.

For the purposes of comparison to the IRA in the table below we also inflation our estimates
of spending levels. Spending on clean energy was $67.9 billion in 2022 dollars. Spending on
energy e�ciency was $23 billion. Sending on EVs was $8.3 billion.

J.2 IRA

The IRA aimed at addressing various economic and environmental issue in the US, such as
reducing inflation, lowering healthcare costs, and investing in clean energy and climate change
mitigation. Here, we focus on two major sources estimating realized IRA spending: reports
by he Penn Wharton Budget Model (PWBM 2023) and Goldman Sachs (Della Vigna et al.
2023). We use the estimates from Goldman Sachs as our default comparison, but also report
the robustness of our results to the estimates from the Penn Wharton Budget Model.

Estimates from (PWBM 2023) suggest that, by 2032, the IRA will lead to the following
amounts of spending. Estimated subsidies that will be spent by are $263 billion for clean
renewable energy, $393 billion for EVs, and $28 billion for energy e�ciency. Based on these
numbers, subsidies for clean energy (excluding advanced manufacturing) are roughly 9.4 times
those for energy e�ciency. However, subsidies for EVs are 1.5 and 14 times the spending on
clean energy and energy e�ciency, respectively. These estimates are relatively similar to the
figures from Goldman Sachs, who suggest that spending on clean energy versus energy e�ciency
is $274 billion versus $44 billion, a ratio of more than 6:1. (They estimate $393 billion for EVs
spending, the same figure as above.)

ARRA Spending
(2022 Prices)

CBO Estimate Goldman Sachs Penn Wharton Model
MVPF

(Our Estimates)

Wind – 5.87

Solar – 3.86

EVs $8.3bn $14bn $393bn $393bn 1.42

Energy 
Efficiency

$23.0bn $2bn $44bn $28bn ~1

IRA Spending

Clean Energy $67.9bn $192bn $274bn $263bn

Note: ARRA numbers are in 2022 prices.

Interestingly, these same basic patterns can also be seen when comparing expected spending
rather than realized spending. If we eliminate the $15 billion cost overrun from the ARRA, we
find that spending on clean energy relative to energy e�ciency is 2:1. If we use the original
CBO estimates of the IRA, we see that $192 billion for clean renewable energy, $14 billion for
EVs, and $2 billion for energy e�ciency. That suggests a ratio an order of magnitude higher.
Interestingly, this also suggests that expected EV spending relative to clean energy spending
was lower under the IRA than in the ARRA. It is only the realized spending figures that
reversed that pattern.
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We have also excluded credits for advanced manufacturing from these calculations. They
were expected to be $37 billion under the IRA and are now projected to be $193 billion according
to Goldman Sachs. If these values were included in our estimates of IRA spending on clean
energy, it would only increase the relative spending on clean energy as ARRA spending on
advanced manufacturing subsidies was far smaller by comparison (and is already included in
part in the $15 billion in cost overruns currently allocated to clean energy production.)
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